THE IMPACT OF METABOLIC SYNDROME ON RADIAL ARTERY DIAMETERS

1Marshell Luntungan
1Andhi Purabaya
2Bambang Budiono
1Janry A. Pangemanan
1Reginald L. Lefrandt

1Departement of Cardiology and Vascular Medicine Faculty of Medicine University of Sam Ratulangi Manado
2Heart and Vascular Center Awal Bros Hospital Makassar
Email: ac3llz_27@yahoo.com

Abstract: Nowadays, radial artery access is widely used as a route for transcatheter coronary interventions. Albeit, in metabolic syndrome (MetS) patients who are at high risks of developing type 2 diabetes mellitus, the systemic atherosclerosis process may have influenced the radial artery structures. This study aimed to determine factors that might influence the radial artery diameters in MetS patients. This was a prospective study conducted in the Catheterization Laboratory Awal Bros Hospital Makassar from 1st January until 15th February 2013 (45 days). The results showed that in this study there were 40 consecutive patients who underwent coronary angiography procedures using the transradial approach, of these 22 patients (55%) were with MetS. The mean radial artery diameters in MetS and non-MetS patients were 2.13 mm and 2 mm, respectively. The waist circumference, wrist circumference, total cholesterol, HDL-C, and triglyceride were significantly different between the two groups. The data were analyzed by using a linear regression resulting in radial artery diameters (RAD) which were significantly and positively correlated only with age among the MetS subjects (r = 0.185, \(P < 0.05 \)). Conclusion: Among the metabolic syndrome patients radial artery diameters were only significantly correlated to ages, and not other factors.

Keywords: radial artery diameter, metabolic syndrome.
Over more than 32 years ago the radial artery was first used by Carpentier as an alternative conduit for coronary artery bypass grafting.1,2 Since then, the versatility of the radial artery has extended beyond its use as an alternative site of access for cardiac catheterization.2

Previous studies have demonstrated the feasibility of using the radial artery as a route for transcatheter coronary interventions. The major advantage of this strategy over conventional transfemoral and/or transbrachial techniques includes the lower risk of access sites related to complications, which may be attributed to the unique anatomy of the radial artery. First, because the radial artery is located superficially, hemostasis can be easily achieved by a local compression. Second, no large veins or nerves exist near the radial artery, which minimizes the chances of injuries to those structures. Lastly, collateral blood supply via the palmar arch usually precludes the occurrence of hand ischemia even when the radial artery becomes occluded by thrombosis.3,4

It is well known that metabolic syndrome (MetS) is a clustering of the cardiovascular (CV) risk factors associated with an increased risk of developing cardiovascular diseases (CVD) and diabetes mellitus. It has also been associated with early vascular alterations, explaining, at least in part, the high CV risk. A variety of stimuli, including inflammation, hemodynamic changes, and injuries can modify the artery diameters.5

Regarding the complexity of MetS related to cardiovascular risk factors, our study was carried out to determine factors that might influence the radial artery diameters in MetS patients.

METHODS

A total of forty consecutive patients who underwent coronary angiography in the Catheterization Laboratory Awal Bros Hospital Makassar by using the transradial approach from 1st January 2013 to 15th February 2013 were enrolled in this study. All subjects were reviewed for their medical histories and the presence of eventual risk factors of cardiovascular diseases. Physical examinations to assess blood pressures (BP) and anthropometric measurements were also performed. The body mass index (BMI) was calculated as weight (in kg) divided by the square of height (in m2). The blood glucose, creatinine, total cholesterol, high density lipoprotein cholesterol, and triglyceride were measured by using standard laboratory techniques.

Patients categorized as having the metabolic syndrome were those who fulfilled the NCEP ATP III MetS criteria for the Asian population. The radial artery diameters were measured by using the quantitative angiographic analyses.

Metabolic syndrome

The categories of MetS patients were based on NCEP ATP III MetS criteria for the Asian population, who fulfilled any 3 of 5 criteria: 1) Increased waist circumference 90 cm in males and 80 cm in females; 2) Elevated triglyceride 150 mg/dL or under drug treatment for elevated triglycerides; 3) Reduced HDL-C <40 mg/dL in males and <50 mg/dL in females, or under drug treatment for reduced HDL-C; 4) Elevated blood pressure (BP): 150 mmHg systolic blood pressure (SBP) or 85 mmHg diastolic blood pressure (DBP), or under anti-hypertensive drug treatment in patients with histories of hypertension; 5) Elevated fasting glucose 100 mg/dL or under drug treatment for elevated glucose.6,7

Arteriography of the arm

A 5Fr (length 7 cm, Merit Medical US) sheath was inserted into the right radial artery under local anesthesia for transradial coronary angiography (CA) and then followed by percutaneous coronary intervention (PCI). The patient was given a mixture of Heparin 5000 IU, isosorbide dinitrate 300Ug and 5cc of normal saline in one syringe, injected into the radial artery.
Arteriography of the arm was performed before coronary angiography. Four mL of contrast was injected from the inserted sheath to acquire the arm arteriography. Angiography was performed on the entire radial and ulnar artery using an antero-posterior projection.

Quantitative angiographic analysis

Quantitative angiographic analysis was performed with an automated edge detection system (quantitative vascular analysis, xcelera r3.1L1.1.422-2009, Philips, the Netherlands) by the operator. The radial artery outer luminal diameter of the sheath was used as the calibration reference for quantitative angiographic analysis. The inner luminal diameter of the radial artery was measured at one point after the sheath.

Statistical analysis

Data were reported as the mean of ± SD. A t-test was performed to compare the means of continuous variables among groups with and without MetS. We performed a linear regression analysis with the radial artery diameter as the dependent variable, while age, height, weight, BMI, waist circumference, total cholesterol, LDL, and blood glucose the independent variables. Significant differences were assumed to be present at a P-value < 0.05. Ninety-five percent confidence intervals were reported. All analyses were performed by using the SPSS 21.0 for Macintosh.

RESULT

There were 40 patients enrolled in this study, 22 of whom (55%) had MetS. The clinical, biochemical, anthropometric, and radial diameter characteristics of the subjects with and without MetS are shown in Table 1.

Table 1. Clinical, biochemical, anthropometric and RAD characteristics of the subjects with or without Mets

<table>
<thead>
<tr>
<th>Variables</th>
<th>MetS (n=22)</th>
<th>N-MetS (n=18)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61±9.9</td>
<td>56.2±8.7</td>
<td>0.11</td>
</tr>
<tr>
<td>Male</td>
<td>19</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>76.4±5</td>
<td>68.2±11</td>
<td>0.06</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>165.5±6</td>
<td>162.7±7</td>
<td>0.18</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>27.7±5.16</td>
<td>25.6±3.5</td>
<td>0.16</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>104.2±17</td>
<td>89±9.5</td>
<td><0.05</td>
</tr>
<tr>
<td>Wrist circumference (cm)</td>
<td>18±2.28</td>
<td>16.4±1.1</td>
<td><0.05</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>144.5±19.7</td>
<td>135±24.7</td>
<td>0.22</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>81.5±8.6</td>
<td>78.8±8</td>
<td>0.31</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)</td>
<td>213.3±58</td>
<td>176.6±32.5</td>
<td><0.05</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td>38±7</td>
<td>50±11</td>
<td><0.05</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>164.3±54.7</td>
<td>128.9±38</td>
<td><0.05</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dL)</td>
<td>137.7±59.5</td>
<td>108.5±45.8</td>
<td>0.09</td>
</tr>
<tr>
<td>RAD (mm)</td>
<td>2.13±0.41</td>
<td>2.01±0.38</td>
<td>0.37</td>
</tr>
<tr>
<td>UAD (mm)</td>
<td>1.78±0.28</td>
<td>1.74±0.3</td>
<td>0.89</td>
</tr>
</tbody>
</table>

RAD = Radial artery diameter; UAD = Ulnar artery diameter.

The mean radial artery diameters in MetS and Non-Mets subjects were 2.13 mm and 2 mm, respectively. The waist circumference, wrist circumference, total cholesterol, HDL-C, and triglyceride were significantly different between the two groups. The data were analyzed by using a linear regression resulting in radial artery diameters (RAD) which were significantly and positively correlated only with age among the MetS subjects (r = 0.185, P < 0.05) (Figure 2).

Figure 2. Linear regression analysis between RAD and age (r = 0.185, P < 0.05).
DISCUSSION

Extensive literature has discussed the role of MetS as a risk factor for cardiovascular diseases (CVD). This study showed that the MetS prevalence was high in this population (55%). There was a significant difference in wrist circumference between the MetS and non-MetS subjects. A recent study in Iran with 1,709 participants showed that there was an association between wrist circumference and cardio-metabolic risk factors.

In the statistical analysis using linear regression, we found that the variance in RADs was correlated with age and the presence of Mets, while in non-Mets subjects all the findings were not significantly correlated. Montalcini et al. found that the brachial artery diameters were larger in postmenopausal women with a metabolic syndrome.

A prolonged exposure to CV risk factors alters the adaptive mechanism that will produce structural changes in arterial walls. The structural changes in the arteries include an increase in collagen contents and calcification of the tunica media; creases and breakages of elastic lamellae; and migration and accumulation of vascular myocytes into the arterial walls. Albeit, the exact underlying mechanism is still unclear.

There are some hypotheses about these findings. MetS is characterized by an activation of the renin-angiotensin system, an important humoral factor involved in regulating the turn over of extracellular matrix proteins, and a strong regulator of matrix metalloproteinase and tissue inhibitor of metalloproteinase, as well as of cytokines released by adipose tissues. The metalloproteinase (MMP) itself has been suspected of being implicated in vascular remodelling; in fact, it is known that this MMP is involved in human and experimental aortic aneurysms, probably by the breakdown of the extracellular matrix (ECM). In MetS, circulating concentrations of pro-MMP-9, MMPs-9, MMP-8, TIMP-1, and MMP-3 were increased in older people.

There are some limitations in our study: the number of samples is too small and the samples are only from a single centre study. However, there remain fewer studies about radial artery diameter in metabolic syndrome patients, especially in the Asian population thus far. Further studies involving larger samples and multi-centres are needed to support this study.

CONCLUSION

Among the metabolic syndrome patients in the Catheterization Laboratory Awal Bros Hospital Makassar the radial artery diameters were only significantly correlated to ages among the other factors.

ACKNOWLEDGEMENT

We would like to thank the director of Awal Bros Hospital Makassar who permitted us to carry out our study in this hospital.

Presented as a Free Paper - Oral Presentation at the 22nd Annual Scientific Meeting of Indonesian Heart Association (Asmhi), Jakarta, Indonesia, April 5-7, 2013.

REFERENCES

5. Montalcini T, Gorgone G, Gazzaruso C, Garzaniti A, Pujia A. Large brachial artery diameter and metabolic syndrome...

