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ABSTRACT 

In this research that introduce abelian modules as a generalizat ion of abelian rings. Let R be an arbitrary  

ring with identity 1. A module M is called reduced if, for any 𝒎 ∈ 𝑴 and any 𝒂 ∈ 𝑹, 𝒎𝒂 = 𝟎 implies  

𝒎𝑹 ∩ 𝑴𝒂 = 𝟎. 
This research using study literatures, to prove that every reduced module is abelian. A module  M  is 

called abelian if, for any m ∈ M and any a ∈ R, any idempotent e ∈ R, mae = mea.  

If 𝑥 ∈ 𝑚𝑅 ∩ 𝑀𝑎, then there exists 𝑚1 ∈ 𝑀 and 𝑟1 ∈ 𝑅 such that 𝑥 = 𝑚𝑟1 = 𝑚1𝑎. Since M is a p.p.-

module, 𝑚𝑎 = 0 implies that 𝑎 ∈ 𝑟𝑅  𝑚 = 𝑒𝑅  for some idempotent 𝑒2 = 𝑒 ∈ 𝑅. Then 𝑎 = 𝑒𝑎 and 

𝑥𝑒 = 𝑚𝑟1𝑒 = 𝑚1𝑎𝑒. Since M is abelian and 𝑚𝑒 = 0, 𝑚𝑟1𝑒 = 𝑚𝑒𝑟1 = 𝑚1𝑎𝑒 = 𝑚1𝑒𝑎 = 𝑚1𝑎 = 0. So,  

𝑥 = 𝑚𝑟1 = 𝑚1𝑎 = 0. Hence 𝑚𝑅 ∩ 𝑀𝑎 = 0, that is, M is reduced. Reduced modules  are abelian. 

Keywords : Reduced Modules, Abelian Modules 

 

RINGKAS AN 

Dalam penelit ian in i memperkenalkan tentang modul-modul yang abelian sebagai generalisasi dari 

gelanggang-gelanggang yang abelian. Misalkan 𝑹 sebarang gelanggang dengan Identitas 1. Sebuah 

modul 𝑴 dikatakan “reduced” jika, untuk setiap 𝒎 ∈ 𝑴 and setiap 𝒂 ∈ 𝑹, 𝒎𝒂 = 𝟎 maka 𝒎𝑹 ∩ 𝑴𝒂 =
𝟎.  

Penelit ian in i berupa studi literatur, untuk membuktikan setiap modul reduced adalah abelian. Sebuah 

modul 𝑀  dikatakan Abelian jika, untuk setiap 𝑚 ∈ 𝑀 dan 𝑎 ∈ 𝑅, ada idempoten 𝑒 ∈ 𝑅, 𝑚𝑎𝑒 = 𝑚𝑒𝑎 .  

Jika 𝑥 ∈ 𝑚𝑅 ∩ 𝑀𝑎, maka ada 𝑚1 ∈ 𝑀 dan 𝑟1 ∈ 𝑅 sehingga 𝑥 = 𝑚𝑟1 = 𝑚1𝑎. Sejak 𝑀 adalah sebuah 

p.p.-module, 𝑚𝑎 = 0 implikasinya 𝑎 ∈ 𝑟𝑅  𝑚 = 𝑒𝑅  untuk beberapa idempoten 𝑒2 = 𝑒 ∈ 𝑅. Maka 

𝑎 = 𝑒𝑎 dan 𝑥𝑒 = 𝑚𝑟1 𝑒 = 𝑚1𝑎𝑒. 

Sejak 𝑀 adalah abelian dan 𝑚𝑒 = 0, 𝑚𝑟1𝑒 = 𝑚𝑒𝑟1 = 𝑚1𝑎𝑒 = 𝑚1𝑒𝑎 = 𝑚1𝑎 = 0. Jadi, 𝑥 = 𝑚𝑟1 =
𝑚1𝑎 = 0. Sehingga 𝑚𝑅 ∩ 𝑀𝑎 = 0, maka, 𝑀 reduced. Modul-modul reduced adalah abelian.  

Kata Kunci: Modul-modul Reduced, modul-modul yang abelian. 

 

Introduction 

Throughout this paper R denotes an associative ring with identity 1, and  modules will be 
unitary right R-modules. 
A left R-module M over the ring R consists of an abelian group (M, +) and an operation R × M 
→ M (called scalar multiplication, usually just written by juxtaposition, i.e. as rx for r in R and 
x in M) such that 
For all r,s in R, x,y in M, we have 
1. r(x + y) = rx + ry 
2. (r + s)x = rx + sx 
3. (rs)x = r(sx) 
4. 1Rx = x if R has multiplicative identity 1R. 
Recall that a ring is reduced if it has no nonzero nilpotent elements. A module M is called 
reduced if, for any 𝑚 ∈ 𝑀 and any 𝑎 ∈ 𝑅, 𝑚𝑎 = 0 implies 𝑚𝑅 ∩𝑀𝑎 = 0. Let e be an 
idempotent in R.  
The ring R is called semicommutative if for any 𝑎,𝑏 ∈ 𝑅,𝑎𝑏 = 0 implies 𝑎𝑅𝑏 = 0. A module 

𝑀𝑅 is called semicommutative if, for any 𝑚 ∈ 𝑀 and any 𝑎 ∈ 𝑅,𝑚𝑎 = 0 implies 𝑚𝑅𝑎 = 0 [1]. 
This problema Are reduced modules abelian? This research limited on Reduced modules. 
Objective of research to  prove that every reduced module is abelian 

 

http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://en.wikipedia.org/wiki/Abelian_group
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Reduced Modules Are Abelian 

 

Group 

Definition 1.  
Let G be a nonempty set together with a binary operation (usually called multiplication) that 
assigns to each ordered pair (a,b) of elements of G an element in G denoted by ab. We say G is 
a group under this operation if the following three properties are satisfied.  

1. Associativity. The operation is associative; that is,  𝑎𝑏 𝑐 = 𝑎 𝑏𝑐  for all 𝑎,𝑏, 𝑐 in G. 
2. Identity. There is an element 𝑒 (called the identity) in 𝐺, such that 𝑎𝑒 = 𝑒𝑎 = 𝑎 for all 𝑎 in 

𝐺. 
3. Inverses. For each element 𝑎 in 𝐺, there is an element 𝑏 in 𝐺(called an inverse of 𝑎) such 

that 𝑎𝑏 = 𝑏𝑎 = 𝑒. 
If a group has the property that 𝑎𝑏 = 𝑏𝑎 for every pair of elements 𝑎 and 𝑏, we say the group is 
commutative or-better-yet-Abelian (in honor of the great Norwegian mathematician Niels Abel). 

A group is non-Abelian if there is some pair of elements 𝑎  and 𝑏 for which 𝑎𝑏 ≠ 𝑏𝑎. When 
encountering a particular group for the first time, one should determine whether or not it is 
Abelian. 
 
Example 1. 

The set of integers ℤ (so denoted because the German word for integers is Zahlen), the set of 
rational numbers ℚ (for quotient), and the set of real numbers ℝ are all groups under ordinary 

addition. In each case the identity is 0 and the inverse of 𝑎 is – 𝑎. 
 
Definition 2.  

(Group Homomorphism) A homomorphism 𝜙 from a group 𝐺 to a group 𝐺  is a mapping from 𝐺 

into 𝐺  that preserves the group operation; that is,  𝑎𝑏 𝜙 =  𝑎𝜙  𝑏𝜙  for all 𝑎,𝑏 in 𝐺. 
 
Definition 3. 

(Kernel of a Homomorphism) The Kernel of a homomorphism 𝜙 from a group 𝐺 to a group 
with identity 𝑒 is the set  𝑥 ∈ 𝐺 𝑥𝜙 = 𝑒 . The kernel of 𝜙 is denoted by Ker 𝜙. 
 

Ring 

Definition 4. 

A ring R is a set with two binary operations, addition  𝑎 + 𝑏  and multiplication  𝑎𝑏  such that 
for all 𝑎,𝑏, 𝑐 in R. 

1. 𝑎 + 𝑏 = 𝑏 + 𝑎. 

2.  𝑎 + 𝑏 + 𝑐 = 𝑎 +  𝑏 + 𝑐 . 

3. There is an element 0  in R such that 𝑎 + 0 = 𝑎. 

4. There is an element – 𝑎 in 𝑅 such that 𝑎 +  −𝑎 = 0.   

5. 𝑎 𝑏𝑐 =  𝑎𝑏 𝑐.     

6. 𝑎 𝑏 + 𝑐 = 𝑎𝑏 + 𝑎𝑐 and  𝑏 + 𝑐 𝑎 = 𝑏𝑎 + 𝑐𝑎. 
So, a ring is an Abelian group under addition, also having an asscociative multiplication that is 
left and right distributive over addition. Note that multiplication need not be commutative. 
When it is, we say the ring is commutative. Also, a ring need not have an identity under 

multiplication. When a ring other than  0  has an identity under multiplication, we say the ring 
has a unity (or identity). A nonzero element of a commutative ring with unity need not have a 

multiplicative inverse. When it does, we say it is a unit of the ring. Thus, 𝑎 is a unit if 𝑎−1 
exists. 

The following terminology and notation is convenient. If 𝑎 and 𝑏 belong to a commutative ring 
𝑅 and 𝑎 is nonzero, we say 𝑎 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑏 (or 𝑎 is a factor of 𝑏) and write 𝑎 𝑏 , if there exists an 
element 𝑐 in 𝑅 such that 𝑏 = 𝑎𝑐. If 𝑎 does not divide 𝑏, we write 𝑎 × 𝑏. 
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Example 2. 
The set ℤ of integers under ordinary addition and multiplication is a commutative ring with 

unity 1. The units of ℤ are 1 and -1. 
 

Integral Domain 

Definition 5.  
A nonzero element 𝑎 in a commutative ring 𝑅 is called a zero-divisor if there is nonzero 

element 𝑏 in 𝑅 such that 𝑎𝑏 = 0. 
 
Definition 6.  
A commutative ring with a unity is said to be an integral domain if it has no zero-divisors.  
 
Example 3. 
The ring of integers is an integral domain.  
 
Definition 7.  
A commutative ring with a unity is called a field if every nonzero element is a unit.  
 
Ideal 

Definition 8. 

A subring 𝐴 of a ring 𝑅 is called a (two-sided) ideal of 𝑅 if for every 𝑟 ∈ 𝑅 and every 𝑎 ∈ 𝐴 
both 𝑟𝑎 and 𝑎𝑟 are in 𝐴. 

So, a subring 𝐴 of a ring 𝑅 is an ideal of 𝑅 if 𝐴 “absorbs” elements from 𝑅; that is, if 𝑟𝐴 ⊆ 𝐴 
and 𝐴𝑟 ⊆ 𝐴 for all 𝑟 ∈ 𝑅. 
An ideal 𝐴 of 𝑅 is called a proper ideal of 𝐴 if 𝐴 is a proper subset of 𝑅. In practise, one 
identifies ideals with the following test, which is an immediate consequence of the definition of 
ideal. 
 
Theorem 1. 

A nonempty subset 𝐴 of a ring 𝑅 is an ideal of 𝑅 if: 

1. 𝑎 − 𝑏 ∈ 𝐴 whenever 𝑎, 𝑏 ∈ 𝐴. 

2. 𝑟𝑎 and 𝑎𝑟 are in 𝐴 whenever 𝑎 ∈ 𝐴 and 𝑟 ∈ 𝑅. 
 
Example 4. 
For any ring 𝑅,  0  and 𝑅 are ideals of 𝑅. The ideal  0  is called the trivial ideal. [4] 
 
Module  

A left R-module M over the ring R consists of an abelian group (M, +) and an operation R × M 
→ M (called scalar multiplication, usually just written by juxtaposition, i.e. as rx for r in R and 
x in M) such that 
For all r,s in R, x,y in M, we have 

1. r(x + y) = rx + ry 
2. (r + s)x = rx + sx 
3. (rs)x = r(sx) 
4. 1Rx = x if R has multiplicative identity 1R. 

If one writes the scalar action as fr so that fr(x) = rx, and f for the map which takes each r to its 
corresponding map fr, then the first axiom states that every fr is a group homomorphism of M, 
and the other three axioms assert that f is a ring homomorphism from R to the endomorphism 
ring End(M). Thus a module is a ring action on an abelian group (cf. group action. Also 
consider Monoid action of multiplicative structure of R). In this sense, module theory 

http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://en.wikipedia.org/wiki/Abelian_group
http://en.wikipedia.org/wiki/Group_homomorphism
http://en.wikipedia.org/wiki/Ring_homomorphism
http://en.wikipedia.org/wiki/Endomorphism_ring
http://en.wikipedia.org/wiki/Endomorphism_ring
http://en.wikipedia.org/wiki/Endomorphism_ring
http://en.wikipedia.org/wiki/Group_action
http://en.wikipedia.org/wiki/Monoid_action
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generalizes representation theory, which deals with group actions on vector spaces, or 
equivalently group ring actions.  
 
Example 5. 

The set of rational numbers ℚ (for quotient) is a module M. 
 
Usually, we simply write "a left R-module M" or RM. A right R-module M or MR is defined 
similarly, only the ring acts on the right, i.e. we have a scalar multiplication of the form M × R 
→ M, and the above axioms are written with scalars r and s on the right of x and y. (Authors 
who do not require rings to be unital omit condition 4 above in the definition of an R-module, 
and so would call the structures defined above "unital left R-modules". In this article, consistent 
with the glossary of ring theory, all rings and modules are assumed to be unital.)  
A bimodule is a module which is a left module and a right module such that the two 
multiplications are compatible. 
If R is commutative, then left R-modules are the same as right R-modules and are simply called 
R-modules. 
 

Submodules & Homomorphisms 

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule (or R-
submodule, to be more explicit) if, for any n in N and any r in R, the product r n is in N (or nr 
for a right module). 
The set of submodules of a given module M, together with the two binary operations + and ∩, 
forms a lattice which satisfies the modular law: Given submodules U, N1 , N2 of M such that N1 

⊂ N2, then the following two submodules are equal: (N1 + U) ∩ N2 = N1 + (U ∩ N2). 
If M and N are left R-modules, then a map f : M → N is a homomorphism of R-modules if, for 
any m, n in M and r, s in R: f(rm + sn) = rf(m) + sf(n) 
This, like any homomorphism of mathematical objects, is just a mapping which preserves the 
structure of the objects. Another name for a homomorphism of modules over R is an R-linear 
map. 
A bijective module homomorphism is an isomorphism of modules, and the two modules are 
called isomorphic. Two isomorphic modules are identical for all practical purposes, differing 
solely in the notation for their elements. 
The kernel of a module homomorphism f : M → N is the submodule of M consisting of all 
elements that are sent to zero by f. The isomorphism theorems familiar from groups and vector 
spaces are also valid for R-modules. 
The left R-modules, together with their module homomorphisms, form a category, written as R-
Mod. This is an abelian category [5]. 
 

Left & Right Modules 

In this section, we do not assume that the rings involved to be commutative. 
 
Definition 9.  
(Left modules) Let R be a ring. A left R-modules (or a left module over) is an abelian group M 
together with a map  𝑎, 𝑚  of 𝑅 × 𝑀 into 𝑀 satisfying the following properties: 

1) 𝑎 𝑚 + 𝑛 = 𝑎𝑚 + 𝑎𝑛 
2)  𝑎 + 𝑏 𝑚 = 𝑎𝑚 + 𝑏𝑚 
3)  𝑎𝑏 𝑚 = 𝑎 𝑏𝑚  
4) 1𝑚 = 𝑚 
for 𝑚,𝑛 ∈ 𝑀 and 𝑎,𝑏 ∈ 𝑅. The map 𝑅 × 𝑀 → 𝑀 is refered to as the scalar multiplication.  
This definition is somewhat familiar to us, as we can see in the following example of vector 
spaces. 
 
Example 6. 

If 𝑅 is a field, then a left 𝑅-module is what is known as the 𝐾-vector space. 

http://en.wikipedia.org/wiki/Representation_theory
http://en.wikipedia.org/wiki/Group_ring
http://en.wikipedia.org/wiki/Unital_algebra
http://en.wikipedia.org/wiki/Glossary_of_ring_theory
http://en.wikipedia.org/wiki/Bimodule
http://en.wikipedia.org/wiki/Commutative_ring
http://en.wikipedia.org/wiki/Subgroup
http://en.wikipedia.org/wiki/Lattice_%28order%29
http://en.wikipedia.org/wiki/Modular_lattice
http://en.wikipedia.org/wiki/Map_%28mathematics%29
http://en.wikipedia.org/wiki/Homomorphism
http://en.wikipedia.org/wiki/Linear_map
http://en.wikipedia.org/wiki/Linear_map
http://en.wikipedia.org/wiki/Linear_map
http://en.wikipedia.org/wiki/Bijective
http://en.wikipedia.org/wiki/Isomorphism
http://en.wikipedia.org/wiki/Kernel_%28algebra%29
http://en.wikipedia.org/wiki/Isomorphism_theorem
http://en.wikipedia.org/wiki/Category_theory
http://en.wikipedia.org/wiki/Abelian_category
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Example 7. 
The abelian group 

𝑅𝑛 = 𝑅 × … × 𝑅 
n copies 

is a left 𝑅-module if we left 

𝑎 𝑎1 ,… , 𝑎𝑛 =  𝑎𝑎1,… , 𝑎𝑎𝑛 , 
Where 𝑎, 𝑎1,… , 𝑎𝑛 ∈ 𝑅. In particular, 𝑅 is a left 𝑅-module.  
 
Example 8. 

Let 𝐴 be a commutative ring and let 𝑅 be the ring of 𝑚 × 𝑛 matrices over 𝐴. Let 𝑀 be the 
abelian group of column 𝑛-vector in 𝐴𝑛. Then 𝑀 can be made into a left 𝑅-module by using the 
matrix multiplication as the scalar multiplication. 
 
Proposition 1. 

Let 𝑀 be a left 𝑅-module. then the followings are true: 

1) 0𝑅𝑚 = 0𝑀 
2) 𝑎0𝑀 = 0𝑚  
3)  −𝑎 𝑚 = −𝑎𝑚 = 𝑎 −𝑚  𝑎𝑛𝑑 𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟  −1 𝑚 = −𝑚 
 
Example 9. 

Let M be a left  𝑅-module and let 𝐵 =  𝑏 ∈ 𝑅:𝑏𝑚 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ 𝑀 . 
Then 𝐵 is a left ideal in 𝑅. Furthermore, if 𝐼 is any left ideal contained 𝐵 then 𝑀 becomes a left 

𝑅/𝐼-module by defining  𝑎 + I 𝑚 = 𝑎𝑚. 
The notion of right R-modules is dual to that of the left R-modules. 
 
Defintion 10. 

(Right modules). Let R be a ring. A right 𝑅-module (or a right module over 𝑅) is an abelian 

group 𝑀 together with a map  𝑚,𝑎 ↣ 𝑚𝑎 of 𝑀 × 𝑅 into 𝑀 satisfying the following properties: 

1)  𝑚 + 𝑛 𝑎 = 𝑚𝑎 + 𝑛𝑎 
2) 𝑚 𝑎 + 𝑏 = 𝑚𝑎 + 𝑚𝑏 
3) 𝑚 𝑎𝑏 =  𝑚𝑏 𝑎 
4) 𝑚1 = 𝑚 
for 𝑚,𝑛 ∈ 𝑀 and 𝑎,𝑏 ∈ 𝑅.  
 

Baer Modules 

Lee and Zhou introduced Baer, quazi-Baer and p.p. as follows modules: 

1) 𝑀𝑅 is called Baer (respectively quazi-Baer) if, for any subset (respectively submodule) 𝑋 
of 𝑀, 𝑎𝑛𝑛𝑅 𝑋 = 𝑒𝑅, where 𝑒2 = 𝑒 ∈ 𝑅. 

2) 𝑀𝑅 is called principally projective (or simply p.p.) module (respectively right principally 
quasi-Baer (or simply right p.q.-Baer) module) if, for any element 𝑚 ∈ 𝑀, 𝑎𝑛𝑛𝑅 𝑚 = 𝑒𝑅 
(resp. 𝑎𝑛𝑛𝑅 𝑚𝑅 = 𝑒𝑅) where 𝑒2 = 𝑒 ∈ 𝑅. [3] 
 

Semicommutative Modules  

Let M  be an R-module. Recall that M is called semicommutative module if for any 𝑎 ∈ 𝑅  and 
𝑚 ∈ 𝑀, 𝑚𝑎 = 0 implies 𝑚𝑅𝑎 = 0 and R is called a semicommutative ring if 𝑅𝑅 is a 
semicommutative module. in this work we will call 𝑀 𝑆-semicommutative if for any 𝑓 ∈ 𝑆 and 
𝑚 ∈ 𝑀, 𝑓 𝑚 = 0 implies 𝑓𝑔 𝑚 = 0 for every 𝑔 ∈ 𝑆. Then a ring R is a semicommutative 
ring if and only if 𝑅𝑅 is an 𝑆-semicommutative module where 𝑆 = 𝐸𝑛𝑑𝑅 𝑅𝑅 ≅ 𝑅. Note that 

any submodule 𝑁 of an S-semicommutative module 𝑀 is 𝑆-semicommutative. 𝑀 is S-principally 
quasi-Baer (or S-p.q.-Baer for short) if for any 𝑚 ∈ 𝑀, 1𝑆 𝑚 = 𝑆𝑒 (which is equal to 
1𝑆 𝑚𝑅 ) for some 𝑒2 = 𝑒 ∈ 𝑆. A ring is called an abelian ring if its idempotents are central. 

And also note that if 𝑀 is an S-semicommutative module, then for all 𝛼 ∈ 𝑆, Ker(𝛼) is a fully 
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invariant submodule of 𝑀 and so 𝑀 satisfies summand intersection property, that is, intersection 
of two direct summand of 𝑀 is again direct summand. [2] 
 

Reduced Modules 

A ring is reduced if it has no nonzero nilpotent (make zero) elements. A module M is called 

reduced if, for any 𝑚 ∈ 𝑀 and any 𝑎 ∈ 𝑅, 𝑚𝑎 = 0 implies 𝑚𝑅 ∩𝑀𝑎 = 0. [1] 
 

Reduced Modules Are Abelian 

Definition 11. A module M, is called abelian, if for any 𝑚 ∈ 𝑀 and any 𝑎 ∈ 𝑅, any idempotent 

𝑒 ∈ 𝑅,𝑚𝑎𝑒 = 𝑚𝑒𝑎.  
 
Lemma 1. If the module M is semicommutative, then M is abelian. The converse holds if M is a 
p.p.-module.  
Proof. Let 𝑒 be an idempotent in R and 𝑚 ∈ 𝑀, 𝑎 ∈ 𝑅. Since 𝑒 is idempotent and M is 

semicommutative, we have 𝑚𝑒 1𝑅 −𝑒 = 0 implies that 𝑚𝑒𝑅 1𝑅 −𝑒 = 0. For any 𝑎 ∈ 𝑅 we 
have 𝑚𝑒𝑎 1𝑅 − 𝑒 = 0, that is, 𝑚𝑒𝑎 = 𝑚𝑒𝑎𝑒. On the orther hand, 𝑚 1𝑅 − 𝑒 𝑒 = 0 implies 
that 𝑚 1𝑅 − 𝑒 𝑅𝑒 = 0. Then 𝑚 1𝑅 − 𝑒 𝑎𝑒 = 0 and so 𝑚𝑎𝑒 = 𝑚𝑒𝑎𝑒. Hence 𝑚𝑒𝑎 = 𝑚𝑎𝑒. 
Thus M is abelian. Suppose now M is abelian and p.p.-module. Let 𝑚 ∈ 𝑀  and 𝑎 ∈ 𝑅 with 
𝑚𝑎 = 0. Then 𝑎 ∈ 𝑟 𝑚 = 𝑒𝑅 for some 𝑒2 = 𝑒 ∈ 𝑅. So 𝑚𝑒 = 0 and 𝑎 = 𝑒𝑎. Hence 𝑚𝑒𝑅 = 0. 

By the assumption 𝑚𝑅𝑒 = 0. Multiplying from the right by a, we have 𝑚𝑅𝑒𝑎 = 0. Since 
𝑎 = 𝑒𝑎, 𝑚𝑅𝑎 = 0. Thus M is semicommutative.  
 
Lemma 2. if M is a reduced module, then M is abelian. The converse holds if M is a.p.p. -
module.  
Proof. Let M be reduced. Since any reduced module is semicommutative and by Lemma 4.2., 
any semicommutative module is abelian, M is abelian. Conversely, let M be an abelian and p.p.-

module. Suppose ma = 0 for 𝑚 ∈ 𝑀  and 𝑎 ∈ 𝑅. If 𝑥 ∈ 𝑚𝑅∩𝑀𝑎, then there exists 𝑚1 ∈ 𝑀 and 
𝑟1 ∈ 𝑅 such that 𝑥 = 𝑚𝑟1 = 𝑚1𝑎. Since M is a p.p.-module, 𝑚𝑎 = 0 implies that 𝑎 ∈ 𝑟𝑅 𝑚 =
𝑒𝑅 for some idempotent 𝑒2 = 𝑒 ∈ 𝑅. Then 𝑎 = 𝑒𝑎 and 𝑥𝑒 = 𝑚𝑟1𝑒 = 𝑚1𝑎𝑒. Since M is abelian 

and 𝑚𝑒 = 0,𝑚𝑟1𝑒 = 𝑚𝑒𝑟1 = 𝑚1𝑎𝑒 = 𝑚1𝑒𝑎 = 𝑚1𝑎 = 0. So,  𝑥 = 𝑚𝑟1 = 𝑚1𝑎 = 0. Hence 
𝑚𝑅∩ 𝑀𝑎 = 0, that is, M is reduced.  
 

Conclusion 

If 𝑥 ∈ 𝑚𝑅∩ 𝑀𝑎, then there exists 𝑚1 ∈ 𝑀 and 𝑟1 ∈ 𝑅 such that 𝑥 = 𝑚𝑟1 = 𝑚1𝑎. Since M is a 
p.p.-module, 𝑚𝑎 = 0 implies that 𝑎 ∈ 𝑟𝑅  𝑚 = 𝑒𝑅 for some idempotent 𝑒2 = 𝑒 ∈ 𝑅. Then 
𝑎 = 𝑒𝑎 and 𝑥𝑒 = 𝑚𝑟1𝑒 = 𝑚1𝑎𝑒. Since M is abelian and 𝑚𝑒 = 0,𝑚𝑟1𝑒 = 𝑚𝑒𝑟1 =
𝑚1𝑎𝑒 = 𝑚1𝑒𝑎 = 𝑚1𝑎 = 0. So, 𝑥 = 𝑚𝑟1 = 𝑚1𝑎 = 0. Hence 𝑚𝑅∩𝑀𝑎 = 0, that is, M is 
reduced. Reduced modules  are abelian. 
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