Antibacterial Efficacy of Nanoparticles of Rambutan Peel Extracts (Nephelium lappaceum L.) compared to Microparticles against Oral Bacteria

Florenly,1 Cindy D. Wijaya,2 Kelvin,3 Nguyen P. G. Bao,3 Pham C. T. Dung3

1Department of Dental Sciences, Faculty of Dentistry, Universitas Prima Indonesia, Medan, Indonesia
2Department of Prosthodontics, Faculty of Dentistry, Universitas Prima Indonesia, Medan, Indonesia
3Faculty of Dentistry, Universitas Prima Indonesia, Medan, Indonesia
Email: ly@unprimdn.ac.id
Received: February 10, 2022; Accepted: March 6, 2022; Published on line: March 13, 2022

Abstract: Oral biofilm containing microorganisms is responsible for various oral infections and inflammatory diseases. Bioactive compounds found in rambutan peel extracts (Nephelium lappaceum L) has antibacterial properties. Nanoparticle sizes were known to have the greater capability as an a antimicrobial. This study aimed to compare the efficacy of rambutan peel extracts (RPEs) in microparticles with nanoparticles against oral bacteria, i.e. Streptococcus mutans and Staphylococcus aureus. This was a laboratory experimental study with a post-test-only design conducted by using RPEs in microparticles (62.5 mg/mL and 250 mg/mL) and nanoparticles (26.5 mg/mL). The particle sizes were measured; the active compound screening was carried out with gas chromatography-mass spectrometry (GC–MS); and the antibacterial activities were tested with the disc diffusion method. The particle size distribution for RPEs with microparticles was measured at 2489 nm, whereas the nanoparticle at 7.491 nm. The GC-MS results demonstrated that both microparticles and nanoparticle RPEs contained oleic acid, hexadecanoic acid, and decanoic acid. A higher percentage of oleic acid was found in nanoparticles of RPEs. There was a significant difference between microparticles of RPEs of 62.5 mg/mL (12.83±1.532) and nanoparticles (16.25±1.529). This study demonstrated that inhibitory power increased along with the elevation of RPEs concentration as the number of chemical components intensified. The ANOVA and post-hoc Tukey HSD test showed significant differences in the effectiveness of RPEs in nanoparticles groups compared to microparticles 62.5 mg/ml against S. mutans (p<0.05), and S. aureus (p<0.05). In conclusion, RPEs were more effective in inhibiting Staphylococcus aureus than Streptococcus mutans.

Keywords: nanoparticles; rambutan peels; Nephelium lappaceum L; antibacterial activity; Streptococcus mutans; Staphylococcus aureus

INTRODUCTION

Poor oral health is a predictive sign of various systemic conditions,1 including aggravation of neurovascular2 and cardiovascular disorders.3 The primary etiology of poor oral health is a biofilm containing microorganisms responsible for various oral infections and inflammatory diseases.4 The most prevalent pathological conditions in the mouth are dental caries, oral mucosa infections, and periodontal disease.5 Microorganisms are the agent responsible for oral diseases. There are many species of bacteria in the oral cavity, some of which are the leading causes of diseases in the oral cavity, such as Streptococcus mutans and Staphylococcus aureus.5 Streptococcus mutans is most commonly found in cavities specific for dental caries and dentinal cavity,7 producing GTF, Gtf B, -C, and -D, which use glucose and sucrose to synthesize glucose polymers.8 Meanwhile, S. mutans metabolizes carbohydrates and creates an environment for pathogenic bacteria to
thrive. A Staphylococcus aureus is one of the microorganisms that cause oral infections, such as peri-implantitis, cheilitis, parotitis, oral mucositis, and other oral infections. Staphylococcus aureus, a Gram-positive anaerobic bacterium with a low guanine and cytosine nucleotide (GC) content, has a significant role in colonization and biofilm-associated infections.

One way to reduce the number of pathogenic bacteria is using antimicrobial agents, namely: chlorhexidine, clindamycin, fluoride, quaternary ammonium salts, and antimicrobial peptides (AMPs). Herbal ingredients as an alternative to antimicrobial agents have proliferated in recent decades. However, their side effects are challenging its current role as first-line therapy. Thus, antibacterial substances found in plants have been subject to extensive investigation in recent years for their biological activities in counteracting diseases.

In Indonesia, the environment is tropical and humid, making it the ideal place for traditional medicine. Rambutan fruit (Nephelium lappaceum L.) is one of the exotic fruits that received much attention due to its bioactive compounds. Based on Hernández-Hernández et al’s study, the substances found in the peel, flesh, and seeds of rambutan fruit have the potential as antibacterial, anticancer, antiviral, antidiabetes, antioxidants, and anti-inflammatory. The dried rambutan flesh (Nephelium lappaceum L.) has been commonly applied in traditional medicine, while fruit peel has always been considered waste. Rambutan peel extracts (RPEs) have better antimicrobial potential than other parts, and consists of phenolics, flavonoids, tannins, steroids, and other components. Interestingly, phenolic compounds, one of the essential phytochemical constituents, were found abundance in rambutan fruit peels. Its phenolic profile comprises corilagin, ellagic acid, geraniin, and quercetin. These phytochemical compounds of RPEs showed high biological activities as antimicrobial, antioxidant, antiviral, anti-inflammatory, and cytotoxic, which may be advantageous for further applications. From the research of Phuong et al., it is known that rambutan peel can be an antibacterial against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. The study is supported by Tina et al’s findings on rambutan Binjai peel extract which acts as an antibacterial against methicillin-resistant Staphylococcus aureus (MRSA).

Particle scale and combination of several biomaterials were being investigated to enhance the antimicrobial effectiveness of the plant extracts. The nanoscale biomaterial, size range from 1–100 nm, increases the surface area’s ratio per volume, which is of interest for researchers while exploring the alternatives for antimicrobial agents. The nanoparticle technology is used as an alternative in developing antimicrobial drugs that can increase the therapeutic efficacy of drugs and prevent unwanted side effects by increasing the surface compounds and intensifying the ability to fight bacteria. Nanoparticles substantially affect living cells, which affect absorption efficiency, selection of internalization pathways, and cytotoxicity. Therefore, this study aimed to compare the antibacterial efficacy of rambutan peel extracts (RPEs) in microparticle and nanoparticle sizes against oral bacteria (Streptococcus mutans and Staphylococcus aureus).

METHODS

This laboratory experiment with a post-test-only research design was conducted using rambutan peel extracts in various sizes and concentrations, i.e., microparticles 62.5 mg/mL; microparticles 250 mg/mL; and nanoparticles. Three groups of each bacteria and six replications were observed. Firstly, the rambutan fruit used as the sample was determined and confirmed as Nephelium lappaceum L. Next, the extraction process was carried out using the maceration method. Fresh rambutan peels (14.32 kg) were thoroughly washed, then oven-dried and smashed into powder using a blender. The dried rambutan peel extract powder (5.3 kg) was mixed and soaked with 70% ethanol with a 1:1 ratio, covered with aluminum foil, and shaken for 24 hours using a shaker.
Afterward, the soaking extract was filtered using a vacuum pump to separate the filtrate and residue. The filtrate obtained was thickened using a rotary evaporator for 4-5 hours at 40°C. Half of the rambutan peel extract was diluted in two concentrations, 62.5 mg/mL and 250 mg/mL, and stored in a dark place at room temperature. Afterwards, the nanoparticles were prepared using 1.5 g of rambutan peel extract and mixed with 10 mL propylene glycol and 5 mL isopropyl methyl. The solution was stirred for 15 minutes to form the oil phase. Separately, a 35 mL PEG-400 and 5 mL tween-80 were poured into beaker glass and stirred for 10 minutes. Then the two solutions were mixed and ultrasonicated for 15 minutes. The particle size was analyzed after obtaining the microparticles and nanoparticles sizes of rambutan peel extracts. Subsequently, the active compound screening was carried out to examine the phytochemical properties of rambutan peel extracts with gas chromatography-mass spectrometry (GC-MS).

Lastly, antibacterial activity tests were performed with the disc diffusion method. The Mueller Hinton Agar (MHA) medium was poured into sterile Petri dishes and allowed to solidify. Bacterial suspension of *Staphylococcus aureus* and *Streptococcus mutans* were inoculated separately by streaking a sterile ose on the medium surface. Paper discs were prepared and dripped with 20 μL of microparticles RPEs (*Nephelium lappaceum L.*) in two concentrations (62.5 mg/mL and 250 mg/mL) and nanoparticles (26.5 mg/mL). The Petri dishes were incubated at 37°C for 24 hours, observed, and measured the clear zone formed using caliper expressed in millimeters. Measurements were made in the vertical and horizontal directions.

RESULTS

The particle size distribution for RPEs with microparticles was 2489 nm, and with nanoparticles was 7,491 nm, as shown in Figure 1. Based on the obtained results, the average microparticle size of RPEs analyzed in this study extended from 1718 to 4145 nm (Fig.1A). The nanoparticle sizes ranged from 4.849 to 13.54 nm (Fig.1B). The phytochemical compounds in RPEs were identified by GC-MS (Fig.2), in micro sizes (Fig.2A) and nano sizes (Fig.2B). The compounds’ detail was characterized in macroparticles (Table 1) and nanoparticles (Table 2).

The normality test showed that the data were normally distributed (p>0.05), and the variance of data was homogenous (p>0.05). The ANOVA was run followed by the Tukey HSD post-hoc test, which showed differences in the effectiveness of RPEs in the three particle size groups (microparticles 62.5 mg/mL, microparticles 250 mg/mL, and nanoparticles) against *S. mutans* (p<0.05).

![Figure 1](image1.png)
Figure 1. Particle size distribution of rambutan peel extracts (RPEs) in (1A) microparticles (2489 nm) and (1B) nanoparticles (7.491 nm).
There was no significant difference noticed between microparticle size RPEs 250 g/mL with either microparticles size 62.5 mg/mL or nanoparticles in the S. aureus group (p>0.05). Thus, it can be concluded that Ho was rejected, and it was proven that there was a difference in effectiveness between the micro and nano-sized of RPEs, in which nanoparticles had tremendous antibacterial potential against oral bacteria.

![Figure 2](image.png)

Figure 2. The GCMS scan of rambutan peel extracts, in micro sizes (2A) and in nano sizes (2B)

Table 1. GC-MS Identification of rambutan peel extracts in micro sizes

<table>
<thead>
<tr>
<th>RT</th>
<th>Compound Name</th>
<th>Formula</th>
<th>Area sum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.75</td>
<td>9-Octadecenoic acid (Z)-, methyl ester (Oleic acid)</td>
<td>C₁₉H₃₆O₂</td>
<td>5.29</td>
</tr>
<tr>
<td>10.605</td>
<td>Hexadecanoic acid, methyl ester</td>
<td>C₁₇H₃₄O₂</td>
<td>3.83</td>
</tr>
<tr>
<td>11.99</td>
<td>(E)-1-(Methoxymethoxy)-1-tetradecen-3-ol (Juniperic acid)</td>
<td>C₁₆H₃₂O₃</td>
<td>2.38</td>
</tr>
<tr>
<td>10.845</td>
<td>Hexadecanoic acid</td>
<td>C₁₆H₃₂O₂</td>
<td>1.69</td>
</tr>
<tr>
<td>3.493</td>
<td>Cyclohexanone, 2-methyl-</td>
<td>C₇H₁₄O</td>
<td>1.38</td>
</tr>
<tr>
<td>11.898</td>
<td>Octadecanoic acid, methyl ester</td>
<td>C₁₆H₃₂O₂</td>
<td>0.6</td>
</tr>
<tr>
<td>11.048</td>
<td>Hexadecanoic acid, ethyl ester</td>
<td>C₁₈H₃₆O₂</td>
<td>0.46</td>
</tr>
<tr>
<td>7.945</td>
<td>Dodecanoic acid (Lauric acid)</td>
<td>C₁₂H₂₄O₂</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Table 2. GC-MS identification of rambutan peel extracts in nano sizes

<table>
<thead>
<tr>
<th>RT</th>
<th>Compound Name</th>
<th>Formula</th>
<th>Area sum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.009</td>
<td>9-Octadecenoic acid, (E)- (Oleic acid)</td>
<td>C₁₉H₃₆O₂</td>
<td>26.61</td>
</tr>
<tr>
<td>9.922</td>
<td>Isopropyl myristate</td>
<td>C₁₇H₃₆O₂</td>
<td>13.21</td>
</tr>
<tr>
<td>10.845</td>
<td>n-Hexadecanoic acid</td>
<td>C₁₈H₃₄O₂</td>
<td>9.66</td>
</tr>
<tr>
<td>12.194</td>
<td>Ethyl (9E)-9-octadecenoate (Oleic acid)</td>
<td>C₂₀H₃₆O₂</td>
<td>8.05</td>
</tr>
<tr>
<td>11.75</td>
<td>6-Octadecanoic acid, methyl ester (Petroselinic acid)</td>
<td>C₁₉H₃₆O₂</td>
<td>5.41</td>
</tr>
<tr>
<td>7.945</td>
<td>Dodecanamide, N, N-bis (2-hydroxyethyl)- (Lauramidie diethanolamine)</td>
<td>C₁₆H₃₅NO₃</td>
<td>5.39</td>
</tr>
<tr>
<td>12.286</td>
<td>Methyl octadeca-13,14-dienoate (Methyl linoleate)</td>
<td>C₁₉H₃₆O₂</td>
<td>3.74</td>
</tr>
<tr>
<td>10.605</td>
<td>Hexadecanoic acid, methyl ester</td>
<td>C₁₇H₃₆O₂</td>
<td>2.39</td>
</tr>
<tr>
<td>6.301</td>
<td>Decanoic acid</td>
<td>C₁₀H₂₀O₂</td>
<td>1.79</td>
</tr>
<tr>
<td>9.46</td>
<td>Myristic acid</td>
<td>C₁₄H₂₄O₂</td>
<td>1.46</td>
</tr>
</tbody>
</table>
Table 3. Antimicrobial inhibition power of rambutan peel extracts (RPEs) against *Streptococcus mutans* and *Staphylococcus aureus*

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>n</th>
<th>Mean ± SD</th>
<th>Rambutan Peel Extracts</th>
<th>Microparticle</th>
<th>Nanoparticle</th>
<th>p value Within groups</th>
<th>p value Between groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus mutans</td>
<td>6</td>
<td>12.47±1.587</td>
<td>Microparticle 62.5 mg/mL</td>
<td>Microparticle 250 mg/mL</td>
<td>Nanoparticle</td>
<td>0.998</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12.55±0.909</td>
<td>Microparticle 250 mg/mL</td>
<td>Microparticle 62.5 mg/mL</td>
<td>Nanoparticle</td>
<td>0.998</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>16.10±0.787</td>
<td>Nanoparticle</td>
<td>Microparticle 250 mg/mL</td>
<td>Nanoparticle</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12.83±1.532</td>
<td>Microparticle 62.5 mg/mL</td>
<td>Microparticle 250 mg/mL</td>
<td>Nanoparticle</td>
<td>0.298</td>
<td>0.003</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>6</td>
<td>14.13±1.294</td>
<td>Microparticle 250 mg/mL</td>
<td>Microparticle 62.5 mg/mL</td>
<td>Nanoparticle</td>
<td>0.298</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>16.25±1.529</td>
<td>Nanoparticle</td>
<td>Microparticle 250 mg/mL</td>
<td>Nanoparticle</td>
<td>0.003</td>
<td>0.058</td>
</tr>
</tbody>
</table>

DISCUSSION

The particle sizes were analyzed to determine the exact size of each sample and its conformity with predetermined standards. The sizes of microparticle ranged from 0.1-100μm. The microparticle sizes stretched from 1718 nm to 3580 nm (99.8%). The sizes of nanoparticles of the sample analyzed stretched from 4.849 to 15.690 nm, with 87.7% sized below 10 nm. In particular, approximately 52% of the particle size was distributed within 6-7 nm and roughly 17% around 8 nm. Apart from particle size, in line with the study conducted by Rostinawati et al., which demonstrated that inhibitory power increased along with elevation of extract's concentration as the number of chemical components intensified.

The phytochemical analysis using GC-MS on RPEs detected eight secondary metabolites in microparticles, while the nanoparticles group consisted of 10 chemical compounds in large quantities. Several components of nanoparticles were similar to microparticles, i.e., octadecenoic acid and hexadecanoic acid. Nevertheless, the primary chemical compounds in nanoparticle size of RPEs were oleic acid, isopropyl myristate, lauramide diethanolamine, and myristic acid. Several studies have proven that RPEs has antimicrobial and antioxidant capacities due to its secondary metabolites, namely oleic acid, hexadecanoic acid, juniperic acid, lauric acid, decanoic acid, and myristic acid. The oleic acid, an omega-9 fatty acid that belongs to a hydrophobic group, consists of more than ten carbon atoms and shows an excellent antibacterial activity by causing lysis to bacteria's protoplasm. Oleic acid functions as a pathogen controller for bacteria and fungi. Lauramide diethanolamine performs as an antiviral and antimicrobial compound. Myristic acid has antifungal properties against *C. albicans* and also has potential as an antimicrobial against oral pathogens.

Apart from that, RPEs were known to have bacteriostatic properties from their...
flavonoids and tannins contents. Flavonoids are valuable as antimicrobial, antioxidant, antitumor, and anti-inflammatory.47-49 Tannins are polyphenolic compounds widely distributed in plants that are more sensitive for gram-positive bacteria.50 Phenolic hydroxyl is the content of tannin, which produces antibacterial properties. Tannins have several ways of inhibiting bacterial growth, namely iron chelation, cell wall synthesis inhibition, and cell membrane disruption.51

Nanoparticles can cross bacterial membranes and affect cell membranes' shape and function and interact with essential components of bacterial cells such as DNA, lysosomes, ribosomes, and enzymes.52 Antibacterial investigations of the two oral bacteria, \textit{S. mutans} and \textit{S. aureus}, confirmed that the inhibition zone of the nanoparticles was more extensive than that of the microparticles. Ultimately, smaller particle sizes are better in impeding bacteria.

CONCLUSION

This study demonstrated the capability of rambutan peel extract (RPEs) to impede the most common oral bacteria, \textit{Streptococcus mutans}, and \textit{Staphylococcus aureus}. The statistical analysis showed that RPEs were more effective as an antibacterial against \textit{S. aureus} than \textit{S. mutans} at various concentrations and particle sizes. Rambutan peel extracts have better antimicrobial potential in nanoparticles (26.5 mg/mL) than microparticles (62.5 mg/mL and 250 mg/mL) in inhibiting the growth of both bacteria.

Conflict of Interest

The authors declare no conflicts of interest.

REFERENCES

34. Pathak Y, Thassu D. Drug delivery nanoparticles formulation and characteri-

