
 JURNAL MIPA UNSRAT ONLINE 1 (1) 45-51

*Corresponding author: Jurusan Kimia FMIPA UNSRAT, Jl. Kampus Unsrat, Manado, Indonesia 95115; Email address:
ynzonronald@gmail.com
Published by FMIPA UNSRAT (2012)

dapat diakses melalui http://ejournal.unsrat.ac.id/index.php/jmuo

Construction of Error-Correction Code Application by

Applying Finite Field and Hadamard Matrix Theory

Robinson Pongoha*, Benny Pinontoana, Winsy Wekua

aJurusan Matematika, FMIPA, Unsrat, Manado

K A T A K U N C I A B S T R A K

Kode perbaikan-galat

Matriks

Lapangan

 Dalam dunia elektronik dan digital, informasi dapat dengan mudah

ditransfer melalui saluran komunikasi. Pada data yang ditransfer galat

dapat muncul dikarenakan oleh berbagai akibat. Untuk menghindari

masalah ini diperlukan kode perbaikan-galat bersama aplikasinya. Konsep

dari kode perbaikan-galat adalah untuk menambahkan bit-tambahan

pada data agar disaat pengiriman, data tersebut lebih kuat dalam

menghadapi gangguan yang hadir di saluran komunikasi. Random Parity

Code (RPC) yang dikemukakan oleh Hershey dan Tiemann (1996) adalah

salah satu dari kode yang dimaksud. Artikel ini menunjukan pembuatan

aplikasi kode perbaikan-galat yang dibuat berdasarkan konsep RPC

dengan bantuan teori Lapangan Terbatas dan Matriks Hadamard. Aplikasi

dibuat menggunakan Metode Rapid Application Development (RAD).

Aplikasi dihasilkan dalam bentuk perangkat lunak komputer. Perangkat

lunak tersebut menjadi lebih efisien dengan menerapkan konsep

algoritma “Divide and Conquer”.

K E Y W O R D S A B S T R A C T

Error-correction code

Matrix

Field

 In the world of digitals and electronics, information could be easily

transferred via communication channel. The transferred data might be or

not containing error that rises by variety of causes. To avoid this matter,

error-correction code is needed along with its efficient application. Error-

correction coding is a concept to add extra data bits to makes the

transmission of data or information more robust to disturbances present

on the communication channel. One of them is the Random Parity Code

(RPC) introduced by Hershey and Tiemann (1996). This article shows the

construction of error-correction code application that is made based on

RPC concept with the help of finite field and hadamard matrix theory. The

application is made using Rapid Application Development (RAD) method.

The produced application is in form of computer software. The software

become more efficient by applying the divide and conquer algorithm

concept.

1. Introduction

Most of people now use computer, people like to

use computer because of its advantage to be more

efficient and effective for doing any tasks. Another

advantage of using computer is, any files (this include

information and communication) within the computer

could be easily managed and shared or transferred by

copying or sending via communication channel such

as cable, wireless network, hardware drive or other

devices. But, despite of its capability to transfer file

easily, the transfer process of files (or information or

communication) not always come in handy. The files

had to going through a communication channel when

it progressing the transfer process. The file resulted

from going through this communication channel might

be different from the initial file. The transferred file

may or may not contain error. Errors from the

communication channel are rises by variety of causes

such as lightning or weather failure, disc scratches,

hardware failure, etc. To avoid this matter, error-

correction code was invented.

Error correction code consists of encoding and

decoding process. When encoding, the message we

decide to encode will be encoded into codeword using

46 JURNAL MIPA UNSRAT ONLINE 1 (1) 45-51

encoding method. This codewords will be sent to go

through a channel, this channel assumed to be noisy.

The channel could be a cable or wireless network,

hardware drive or other devices. When the code

received, it may contain errors or perhaps not. The

received code then will be decoded. Due to

redundancy and decoding method, original message

could be recovered. The illustration of communication

channel with and without coding process can be seen

in Figure 1 and Figure 2.

Figure 1  Normal communication channel.

Figure 2  Communication channel with coding.

In this research an error-correction code

application is made, the theory for making the

application based on Random Parity codes of J.

Hershey and J. Tiemann introduced in 1996. The

Encoding and Decoding concept can be seen in Figure

3 and Figure 4.

Figure 3  Random parity encoder (Hershey and

Tiemann, 1996).

Figure 4  Random parity decoder (Hershey and

Tiemann, 1996).

In this research, the error-correcting code

application will be made by applying some coding

theory with the support of matrix, and field theory. In

the matrix theory there is Hadamard matrices, a

square matrix of order n that is an n  n matrix with

integer entries  1 satisfying: HnHn
T = Hn

THn = nI ; Hn
T

is the transpose of Hn and I is the n  n identity matrix.

Hadamard matrices is an application of finite field

that have a special form and are named to J.

Hadamard, because of the property of their

determinants which attain a bound originally given by

J. Hadamard in 1893 (Agaian, 1985)

The objectives of this research are to produce an

error-correction code application and to see the

application efficiency after implemented with divide

and conquer algorithm concept.

The results of research hopefully will have some

benefits, such as the produced application can be

used to avoid error on file transmission, the produced

application can be implemented on any devices that

require transmission, the produced application can be

used as a base design or blueprint to make another

error-correction code or even its implementation.

2. Methods

2.1. Software Development Method

The error-correction code application in this

research developed using one of the Software

Development Method (SDM)). The method used in this

research is Rapid Application Development (RAD),

developed by James Martin during the 1980s at IBM

and finally formalized it by publishing Rapid

Application Development book in 1991. The model

can be seen in Figure 5.

Figure 5  RAD model.

2.2. Compiler

The compiler used for constructing the

application is Borland Delphi 7 (Build 4.453), based

on Pascal Programming Language.

3. Results and Discussion

3.1. Planning and Requirements

The target user is the computer user that wanted

to avoid corrupted file as a result of the file transfer.

This research requires computer plus its operating

system and compiler.

3.2. Design

The design separated into design diagram that

visualize the model of the program, and design

description. The design diagram of the RPC

application modeled using Unified Modeling Language

(UML).

Figure 7. Operationsets.pas Class Diagram

 JURNAL MIPA UNSRAT ONLINE 1 (1) 45-51 47

3.2.1. Design Diagram

The design diagram in UML is represented into

two different views: the static (or structural) view and

dynamic (or behavioral) view.

Structural Diagram

There are 4 types structural diagram for modeling

the program, they are:

a. Class Diagram

This diagram describes the structure of RPC

program by showing its classes, attributes, operations,

and the relationships among the classes, as in Figure

6 to 9.

b. Package Diagram

This diagram describes how a system is split up

into logical groupings by showing the dependencies

among these groupings, as in Figure 10.

Figure 6  Primary class diagram.

Figure 7  Operationsets.pas class diagram.

Figure 8  About1.pas class diagram.

Figure 9  Confirmation1.pas class diagram.

Figure 10  Package Diagram.

Figure 11  Deployment diagram.

Figure 12  Component diagram.

Figure 13  Activity diagram.

48 JURNAL MIPA UNSRAT ONLINE 1 (1) 45-51

c. Deployment Diagram

This diagram describes the hardware used in

system implementations and the execution

environments and artifacts deployed on the hardware,

as in Figure 11.

Figure 14  Use case diagram.

Figure 15  sequence diagram.

d. Component Diagram

This diagram describes how random parity code

is split up into components and shows the

dependencies among these components, as in Figure

12.

Behavior Diagram

There are 3 types behavior diagram for modeling

the RPC application, they are:

a. Activity Diagram

This diagram describes the operational step-by-

step workflows of components in a system. An activity

diagram shows the overall flow of control, as in Figure

13.

b. Use Case Diagram

This diagram describes the functionality provided

by RPC in terms of actors and their goals that

represented as use cases, also any dependencies

among them, as in Figure 14.

c. Sequence Diagram

This diagram shows how objects communicate

with each other in terms of a sequence of messages.

Also indicates the life spans of objects relative to

those messages, as in Figure 15.

3.2.2. Design Description

The design of the application contain of the

program as the main executor and the unit as a part

of the main program.

Program Description

Main program is the main executor of the

application that initializes the application and run all

units within it.

Unit Description

Units are the individual source code modules that

make up a program or in other words it is the

constructor of main program. A unit is a place to group

functions and procedures that can be called from

main program. A unit consists of at least 3 parts such

as: unit statement as the identifying part, interface

part as the connector part to other unit or program,

implementation part as the definer of procedures and

functions. In this program 4 unit construct the main

program: operationsets, functionsets, confirmation1

and about1. Unit functionsets is the main focus of the

research, especially the procedure Random Parity

Encode and Random Parity Decode as the

implementation of RPC.

procedure RandomParityEncode;

var

i,j,k,l:integer; tempbits:array[0..7] of byte;

tmpbyte:byte;

begin

makeprojector; bitpartition;

for i:=0 to ibytesread-1 do

begin for k :=0 to 3 do

begin for j:=0 to 7 do

begin

tempbits[j]:=obits(projector[j],zlocation[i,k]);

end; l:=1; tmpbyte:=0;

tmpbyte:= tmpbyte or tempbits[0];

repeat

tmpbyte:=(tmpbyte shl 1) or tempbits[l];l:=l+1;

until l=7;

bufferin[(i∙4)+k]:=tmpbyte;

end; end; end;

 JURNAL MIPA UNSRAT ONLINE 1 (1) 45-51 49

//Return Sum of array

//Input: an Array A

//Output: integer or byte

Sum(A[0..n-1])

S ← 0

Repeat

S ← S + A[i]

i ← i + 1

Until i = n

Return S

//Divide the B array by m part and allocate it to

2-dimension array

//Input: Array B of integer/byte

//Output: 2-dimension Array BS of integer/byte

ByteSet(B[0..n-1)

For i ← 0 to (n-1)div m do

For j ← 0 to m-1 do

BS[i,j] ← B[(m*i)+j]

//Return location of maximum value of an Array

//Input: Array A of integer/byte

//Output: integer or byte

SearchMaxLocation(A[0..n-1)

m ← Max(A[0..n-1)

For i ← 0 to n-1 do If A[i] ← m then loc ← i

Return loc

//Encode Input Infoword into Output Codeword

//OB binary length = 2^IB+1 binary length

//Input: integer of byte B

//Output: integer or byte OB

RandomParityEncode(B)

For i ← 0 to n-1 do IB[i] ← OutputBits(B,P[i])

For i ← n-1 downto 0 do OB ← Insertbits(IB[i])

Return OB

3.3. Construction

The RPC application was built using Compiler in

this case Delphi 7 and program source code based on

Pascal Programming Language. The application

constructed based on the design that have been

explained before.

3.4. Cutover and Finalization

This section describes implementation.

Implementation

a. Changes from the original concept

To show what changes implementations are

made to the original concept, the original one is

shown first.

1. Original concept:

i. Binary input for info word is any of the bit size (1-

bit to n-bit).

ii. Projector address x generated with conditions:

- Pseudo randomly generated.

- Cannot be a zero or 0.

- x ∈ A with element of A from 1 to n-bit data

size – 1 or A={1,…,2n-1 }

Example: n = 2 ; Size(n) = 2n = 22 = 4 ; A =

{1,2,3}.

n = 8 ; Size(n) = 28 = 256 ; A = {1,2,3,…, 255}

iii. Number of Projector : any (affected by the input,

usually at least 2n +1)

b. Changes and implementation:

- Data type used in program is set to 8-

bit

- Number of bit input for info word is 2-

bit in 4 parts, then n = 2.

- Projector addresses generated = {1, 2,

3}.

- Projector generated = 2n+1 = 23 = 8

b. Algorithms Implementation

There are some algorithms implemented to the

program. Total of 10 pseudocodes of the algorithms

can be seen below.

procedure RandomParityDecode;

var

bitsin:array[0..7] of byte; Table:array[0..3] of

integer; resultvector:array[0..3] of integer;

i,j,k,m:integer;

begin

makeprojector;insertbyteset;

for j:=0 to ibytesread-1 do

begin

for k:=0 to 3 do

begin

zeromemory(@bitsin,sizeof(bitsin));

bitsin[0]:= (byteset[j,k] and 1);

for i:=1 to 7 do bitsin[i]:= ((byteset[j,k] shr i)

and 1);

for i:=0 to 3 do Table[i]:=0;

for i:=0 to 7 do begin

if bitsin[i]=0 then

Table[projector[i]]:=Table[projector[i]]+1 else

if bitsin[i]=1 then

Table[projector[i]]:=Table[projector[i]]-1;end;

nhadamardconstruction;

for i:=0 to 3 do begin

resultvector[i]:= hadamard[i,0] ∙ Table[0];

for m:=0 to 3 do

resultvector[i]:=resultvector[i] +(hadamard[i,m] ∙

Table[m]); end;

zlocation[j,k]:=byte(sloc(resultvector));

if zlocation[j,k]=1 then zlocation[j,k]:=3 else if

zlocation[j,k]=3 then zlocation[j,k]:=1; end;end;

for i:=0 to ibytesread-1 do

begin bufferin[i]:=0; bufferin[i]:=(bufferin[i] or

zlocation[i,3]);

for m:=2 downto 0 do bufferin[i]:=(bufferin[i] shl

(2)) or zlocation[i,m]; end;end;

//Divide Input data n-bit to m parts of c-bit and

allocate it to array.

//Input: Integer or byte

//Output: array of byte/integer

ByteDivision(B)

For i ← 0 to m do P[i] ← Bitcheck(B,(c*i),c)

//Return Output bits 1 or 0 by processing 2 inputs

//Input: two integer or byte x and y

//Output: 1 or 0

Outputbits(x,y)

B ← x and y

For i ← 0 to n-1 do OB[i] ← Bitcheck(B,i,1)

Return (Sum(OB)) mod 2

//Generate n Projector with address for Random

Parity Coding process

//Input: integer n

//Output: array P of byte/integer

MakeProjector(n)

For i ← 0 to n-1 do P[i] ← ProjectorAddress

50 JURNAL MIPA UNSRAT ONLINE 1 (1) 45-51

//Decode Input codeword into Output infoword

//Input: integer or byte B

//Output: Location on Maximum value, integer or

byte

RandomParityDecode(B)

For i ← 0 to n-1 do

Table[i] ← 0

For i ← 0 to n-1 do

If Bitcheck(B,i,1)= 1 then dec(Table[P[i]]) else

If Bitcheck(B,i,1)= 0 then inc(Table[P[i]])

RV ← MatrixMultiplication(Table,H)

Return SearchMaxLocation(RV)

//Construct Hadamard Matrix order n

//Input: integer n

//Output: Matrix H order n

HadamardConstruction(n)

H[0,0] ← 1

If n<2 then return H else

k ← 1

Repeat

a ← (2^k)-1

For i ← 0 to a-1 do

For j ← 0 to a-1 do

 Begin

 H[i,(j+a)] ← H[i,j]

 H[(i+a),j] ← H[i,j]

 H[(i+a),(j+a)] ← -H[i,j]

 End

k ← k+1

Until k = n

Return H

//Multiplies Matrix X times Matrix Y

//Input: 2 m × n Matrices X and Y

//Output: Matrix Z = XY

MatrixMultiplication(X,Y)

For i ← 0 to m-1 do

For j ← 0 to n-1 do

Z[i,j] ← 0

 For k ← 0 to p-1 do

 Z[i,j] ← Z[i,j] + X[i,k] * Y[k,j]

Return Z

Software Correctness and Efficiency

The correctness verification will be done using

experimental analysis. The efficiency will be

determined by seeing the program run-time and

storage usage capability.

a. Software correctness verification (using

experimental analysis)

The process is correct if d = 0 for e ≤ 1, with d =

binary distance of encode input and decode output; e

= number of error; n = number of letter input.

Tabel 1  Correctness Table.

According to the Table 1, the whole process is

correct because d = 0 for e ≤ 1

b. Software Efficiency

This section shows that the software become

more efficient by implementing the Byte Division

algorithm than before implementing it, Application A

with implementation and Application B without it.

1. Storage/Memory Usage

The memory usage of each application is

calculated according to procedures, functions and

operations within each of it.

Tabel 2  Memory usage of application A and B

Gambar 1  Comparison chart of application A and B

memory usage growth with n input.

From the Table 2 and chart in Figure 16 can be

seen that Application A has less memory usage than

Application B even with increasing number of input.

Then, App A is better and more efficient than App B.

So it is sufficient just to show that implementation of

Byte Division algorithm have better run-time and

storage/memory usage than without implementing

the Byte Division algorithm to the application. In this

section the

2. Run-time

Besides the Byte Division algorithm that only

implemented to Application A, other algorithms

implemented to Application A and B is the same

algorithm. Byte Division algorithm makes number of

input and step processed by Application A and B

different on each following procedures: Buffering,

Projector Generator, Encode, Decode, and Hadamard

Matrix Construction. With the number of input and

step increased, so is the run-time. Because of

conditions above the total run-time of each process

become:

TA(n) = T1(n) + T2(n) + … + Tk(n) + TComb(n)

TB(n) = T1(n) + T2(n) + … + Tk(n) + TComb(n)

Input Output n e D

123 123 3 0 0,0,0

123abc 123abc 6 0 0,0,0,0,0,0

123abc!@# 123abc!@# 9 0 0,0,0,0,0,0,0,0,0

123 123 3 1 0,0,0

123abc 123abc 6 1 0,0,0,0,0,0

123abc!@# 123abc!@# 9 1 0,0,0,0,0,0,0,0,0

Procedure A B

Projector 8 512

Codeword buffer out 4(n) 64(n)

Byte Division 4(n) 0

Codeword buffer in 4(n) 64(n)

Byte Set 4(n) 64(n)

Table 4 256

Result Vector 4 256

Hadamard Matrix 16 65536

Total 36+16(n) 66560+192(n)

Initial Memory

usage (n = 1)

52 66752

 JURNAL MIPA UNSRAT ONLINE 1 (1) 45-51 51

TA(n), TB(n) :Application A and B total run-time with n

input

Tk(n) : run-time of algorithm k with n input

TComb(n) : run time of Byte Division and Byte

Set algorithm

n : number of input

It is important to show that Byte Division

algorithm have no significant influence to total run-

time of application.

From the analysis based on the pseudocode, the

run-time for each algorithm T1 (Byte Division) and T2

(Byte Set) , with m as the number of input for

algorithm implementation are:

T1(n) = 5m(n) , T2(n) = 3∙m(n) ;

TComb = T1(n) + T2(n)

The value of m according to implementation on

Application A, m1,m2 = {4,4} and Application B, m1,m2

= {0,64}

TComb1 = 5m1n + 3m2n = 5 ∙ 4 ∙ n + 3 ∙ 4 ∙ n

 = 20n + 12n = 32n

TComb2 = 5m1n + 3m2n = 5 ∙ 0 ∙ n + 3 ∙ 64 ∙ n

 = 0 + 64n = 64n

Then, TComb1 < TComb2 and comparison 1 : 2 for

every n, with n = 1, 2, …

Tabel 3  Comparison of application A and B number

of step and input.

Algorithm

implementation
Comparison (A : B)

Projector 8:512 = 1:64

Random Parity Encode 32:512 = 1:16

Buffering codeword out 4:64 = 1:16

Buffering codeword in 4:64 = 1:16

Hadamard Construction 1:8

Random Parity Decode 4:64 = 1:16

According to Table 3, Application A have less

comparison value than Application B, then TA – Tcomb1

< TB – Tcomb2. Under the condition TComb1 < TComb2, the

total run-time condition become TA < TB. Because of

the linearity of Total run-time equation, the condition

works for every n input.

TA is 2 to 64 times more efficient than TB. Taking

the average of comparison value, TA is 19.714 times

more efficient than TB.

4. Conclusion

According to results and discussions, some

conclusions are made. The application can be

produced in form of computer program with some

abilities and weaknesses. By applying the Divide and

Conquer algorithm concept, the application become

more efficient than before applying the concept either

in term of memory usage and run-time. In term of

memory usage for initial memory usage (52 and

66752), the application is 1283.692 times more

efficient. And for each input n, memory usage

increased by 16 and 192, the application is 12 times

more efficient.

References

Agaian, S.S. 1985. Hadamard Matrices and Their

Applications. Springer-Verlag.

Hershey, J. and Tiemann, J. 1996. “Random Parity

Coding” in International Conference on

Communications. Vol. 1, pp. 122-126.

.

