Struktur Komunitas Mangrove Kabupaten Morowali Provinsi Sulawesi Tengah (Kasus Pada Desa Maratape, Desa Lafeu, Dan Desa Labota)
(Mangrove Community Structure Morowali District, Central Sulawesi Province Case In Maratape Village, Lafeu Village, And Labota Village)
Joshian Nicolas William Schaduw
Marine Science Study Program, Faculty of Fishery and Marine Science, University of Sam Ratulangi Manado 95119
Corresponding author: schaduw@unsrat.ac.id

Abstract
The research purpose aims at analyzing the structure of the existing mangrove communities along the coastal area of Morowali District, Central Sulawesi Province. The sampling was taken from three villages, i.e. Maratape Village, Lafeu Village, and Labota Village. This research used the quadrant line transect method. The analysis and description were made after the method had been conducted. The composition of mangrove species found in this research was 3 (three) types, i.e. Rhizophora apiculata, Sonneratia alba, and Rhizophora stylosa. Of the three species the research finds, the dominant ones are Rhizophora apiculata and Sonneartia alba. The highest species density values were found at Station 1 (M01), i.e. R. apiculata. The frequency value had the highest value found at Station 2 (M02), i.e. R. apiculata type, and the highest relative frequency was R. apiculata. The highest closing value, i.e. S. alba type could be found at Station 2 (M02). The importance value index of Rhizophora apiculata type at the Station 1 (M01) had the highest value and followed in Station 3 (M03), i.e. Sonneratia alba type, the lowest INP analysis in all stations was Rhizophora type stylosa. The dominant mangrove in 3 (three) Morowali District Stations were Rhizophora apiculata and Silneratia alba types. Based on the research results conducted on the structure of mangrove ecosystem communities in Morowali District, Central Sulawesi Province (Maratape Village Menui Kepulauan Sub-District (station 1), Lafeu Village Bungku Pesisir Sub-District (station 2) and Labota Village Bungku Tengah Sub-District (station 3) are definitely classified as natural and have not experienced significant degradation

Keywords: Community Structure, Mangrove, Morowali, Central Sulawesi

Abstrak
Kata kunci : Struktur komunitas; Mangrove; Morowali; Sulawesi Tengah

http://ejournal.unsrat.ac.id/index.php/platax

264
INTRODUCTION

Morowali District Central Sulawesi Province has diverse coastal resources and has very high economic and ecological value. Coral reefs, seagrasses and mangroves are coastal biological resources found frequently in this district. Mangrove ecosystems are a system in nature where life takes place that reflects the mutual relationship between living things and their environment. The living species (mangrove) itself dominantly have species of trees or shrubs which grow and develop in coastal areas. Mangrove forest with its raw bed can filter and neutralize some toxic chemical compounds before exposed to free waters. On the other hand, mangrove forests can be natural buildings that reduce waves that erode the beach. Mangrove forests also serve as a place to live for various species of living things and an upbringing area for certain types of fishes from habitat associations in its surroundings such as seagrass beds and coral reefs. However, the mangrove forest ecosystems are generally destructed due to human activities in natural resources utilization and coastal areas without considering their sustainability, such as logging for excessive fuelwood demands, ponds, settlements, industry and mining. Considering the importance of the ecosystems on the coast, this research aims at determining the structure of mangrove vegetation communities. It analyzes the Value of Di (species density), Fi (frequency Species), Ci (coverage species), RDi (species relative density), RFi (relative frequency species), RCi (species relative coverage), and INP (Importance Value Index).

MATERIALS AND METHODS

Research Place and Time

The research was carried out in Morowali District, Central Sulawesi Province, July 2019. The research location were in three villages, i.e. Maratape Village Kepulauan Sub-District (the Station 1), Lafeu Village Bungku Pesisir Sub-District (the Station 2) and Labota Village Bungku Tengah Sub-District (the Station 3).

Data Collecting Methods

The research method here is the quadrat line transect method (English et al, 1994). This research analyzes the structure of mangrove communities, species density values (Di), Frequency Species (Fi), Species Coverage (Ci), Species Relative Density (RDi), Species Relative Frequency (RFi) and Importance Value Index (INP). This method is very efficient to use and it has been applied in several previous studies (Schaduw, 2015a; Schaduw, 2016b; and Schaduw, 2018b).

RESULTS AND DISCUSSION

Structure of Mangrove Communities

Based on the research results conducted at three stations (Maratape Village, Lafeu Village and Labota Village) there are 3 mangrove species found, i.e.
Rhizophora apiculata, Rhizophora stylosa and Sonneratia alba. It also finds two types outside the transect, i.e. Bruguera gymnorrhiza and Rhizophora mucronata which included in 3 families of Rhizophoraceae, Sonneratiaceae and Bruguieraceae. The most common type of mangroves found at each research station is Rhizophora apiculata. According to Sofian et al. (2012), this genus has the advantage of adjusting to the environmental conditions for its stilt roots. The basic component of the food chain in the mangrove ecosystems is litter from mangrove plants (leaves, twigs, fruit, stems and so on). Microorganisms will decompose mangrove litter that falls into the waters into detritus particles as a food source for aquatic biota by filtering seawater. Leaf litter is estimated to make an important contribution to the mangrove ecosystem. The high productivity of leaf litter amounts to 78 tons per year per hectares. (Alongi, et al 2002; Holmer and Olsen, 2002).

The number of trees and their average diameter obtained in the research (Table 1) and (Figure 1) at the M01 (Matarape Village) are Rhizophora apiculata with total of 18 trees and average diameter of 16.45cm, and Sonneratia alba with total of 12 trees and total diameter of 15.87 cm. Moreover, Rhizophora apiculata at M02 (Lafeu village) has 12 trees with average diameter of 9.93 cm, and Silneratia alba has 8 trees with total diameter of 35.55 cm. Finally, Rhizophora apiculata at M03 (Labota Village) has 10 trees with average diameter of 9.87cm, and Silneratia alba 12 trees with total diameter of 24.12 cm, and Rhizophora stylosa 4 trees with average diameter of 8.92cm.

<table>
<thead>
<tr>
<th>Species</th>
<th>M01</th>
<th>M02</th>
<th>M03</th>
<th>Average Tree Diameter (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonneratia alba</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>15.87</td>
</tr>
<tr>
<td>Rhizophora apiculata</td>
<td>18</td>
<td>12</td>
<td>10</td>
<td>16.45</td>
</tr>
<tr>
<td>Rhizophora stylosa</td>
<td></td>
<td></td>
<td>4</td>
<td>8.92</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>20</td>
<td>26</td>
<td>32.32</td>
</tr>
</tbody>
</table>

Table 1. Number of trees and average diameter of mangrove forest trees

Figure 1. Diagram of average diameter

Species Density and Species Relative Density
The analysis results of the species density and species relative density (Figures 2 and 3) show that the species density at M01 (Matarape Village) is Rhizophora apiculata with the total density of 0.06, Sonneratia alba 0.04. The species relative density of R.apiculata amounts to 60.00%, and S. alba 40.00%. R. apiculata has the highest species density and relative species density for the higher
number of trees. The species density value of *R. apiculata* at M02 (Lafeu Village) is 0.04 and *S. alba* is 0.03. The species relative density of *R. apiculata* species is 60.00% and *S. alba* is 40.00%. Moreover, the species density value of *R. apiculata*, *S. alba* and *R. stylosa* at M03 (Labota Village) are 0.03, 0.04 and 0.01 consecutively. The species relative density values of *R. apiculata* is 38.46%, *S. alba* is 46.15% and *R. stylosa* is 15.38%. Furthermore, the highest species density and species relative density values are found at the Station 1 (M01), i.e. *R. apiculata* type with the density value of 0.06 and the species relative density of 60.00%. Otherwise, the lowest species density of 0.01 and species relative density values of 15.38% is *R. stylosa* type. Mangroves are the formation of typical coastal plant along the protected tropical and sub-tropical coasts. Mangrove formation is a combination of land and sea. Mangroves depend on sea water and fresh water as their food source and silt from upstream erosion as a supporting material for the substrate. While tides provide food for forests, river water rich in minerals enriching the sediment and swamps where the mangroves grow. Therefore, the shape of the mangrove forest and its existence are protected from land and sea influences (FAO, 1994). Water quality in the mangrove ecosystems also influences the mangrove growth and breeding, salinity is one of the important parameters for the ecosystems to be maintained (Schaduw, 2018a). Different from the mangrove ecosystem in the mainland, a small island mangrove ecosystem has a higher level of vulnerability and lower diversity if compared to that in the mainland, therefore the management approach differs in the dimensions of ecology, economics, social, and institution (Schaduw, 2013; Schaduw 2015b).

The number of a tree species will describe the percentage of the species density and the species relative density. The species density will be high for its suitable substrates and its adaptation to environmental conditions so the species can grow well. Factors that cause small mangrove growth are due to tree roots classified as large so the growth becomes less optimal (Agustini et al. 2016).

![Diagram of species density](http://ejournal.unsrat.ac.id/index.php/platax)

Figure 2. Diagram of species density

Species Frequency and Species Relative Frequency

The species frequency value and species relative frequency (Figures 4 and 5) show that the species frequency of *Rhizophora apiculata* at M01 (Matarape Village) is 1.00, and *Sonneratia alba* 0.67. Moreover, the species relative frequency of *R.apiculata* species is 60.00%, and *S. alba* is 40.00%. The species frequency value of *R.apiculata* at M02 (Lafeu Village) has 1.00 and *S. alba* is 0.33. The species...
The relative frequency of *R. apiculata* is 75.00% and *S. alba* is 25.00%. The species frequency value of *R. apiculata*, *S. alba* and *R. stylosa* at M03 (Labota Village) is 0.66, 1.00 and 0.67 consecutively. On the other hand, the species relative density value of *R. apiculata*, *S. alba* and *R. stylosa* reaches 28.57%, 42.86% and 28.57% consecutively. The highest value is found at the station 2 (M02) with the species frequency value of 1.00 and the species relative frequency value of 75.00%.

![Figure 3. Diagram of species relative density](image1)

![Figure 4. Diagram of species frequency](image2)

![Figure 5. Diagram of species relative frequency](image3)
Species Coverage and Species Relative Coverage

From the analysis of species coverage and species relative coverage (Figures 6 and 7), the species coverage of *Rhizophora apiculata* at M01 (Matarape Village) has 15.46 species coverage, and *Sonneratia alba* 9.62. Moreover, the species relative coverage of *R. apiculata* amounts to 61.65%, and *S. alba* 38.35%. The species coverage value of *R. apiculata* at M02 (Lafeu Village) has 3.27 dan *S. alba* 38.98. Furthermore, the species relative closure of *R. apiculata* is 7.75% and *S. alba* 92.25%. The species coverage of *R. apiculata* at M03 (Labota Village) is 2.93 and *S. alba* is 19.46 and *R. stylosa* 0.86. Finally, the species relative coverage of *R. apiculata* reaches 12.61%, *S. alba* 83.68% and *R. stylosa* 3.71%.
From the research results at above, the highest percentage of the species coverage at M02 is *S. alba* (92.25%). It has an average large diameter of the dense canopy. Moreover, the highest coverage percentage at M01 and M03 is *R. apiculata* (61.65%) and *S. alba* (83.68%). Factors that influence the low species coverage value relate to heterogeneous mangrove conditions. According to Raymond et al. (2010), the more heterogeneous species of the mangroves in a community, the more various the role and the magnitude of the index will be.

From the research results it is shown that *Sonneratia alba* and *Rhizophora apiculata* has the largest tree trunk circles, therefore the coverage value is high. The important factors affecting the species coverage value are the trunk circles and basal areas in a sampling location.

Importance Value Index

The analysis results show that the Importance Value Index of *Rhizophora apiculata* and *Sonneratia alba* (Figure 8) at the M01 (Matarape Village) amounts to 181.65%, and 118.35% consecutively. The Importance Value Index of *R. apiculata* and *S. alba* at M02 (Lafeu Village) reaches 142.75% and 157.25 consecutively. Finally, the Importance Value Index of *R. apiculata*, *S. apiculata* and *R. stylosa* at M03 (Labota Village) amounts to 79.64%, 172.69% and 47.67% consecutively.

From the research results at above it is shown that the highest important value index at M01 (Matarape Village) is *R. apiculata* type with total value of 181.65% and the highest species at M03 (Labota Village) is *S. albadengan* with total value of 172.69%. The species is dominant in two stations. Moreover, the highest important value index at M02 (Lafeu Village) is *S. alba* type with total value of 157.25%. This species is dominant at this station. Indriyanto (2006) in Agustini et al. (2016), argues that the dominant species (in power) in a plant community will have the high importance value index, so the most dominant species will have the greatest importance value index. On the other hand, Raymond et al. (2010) states that species with the high importance value index means having greater cumulative control value to their habitat. This species will be superior in utilizing resources or more able to adapt to the local environment. According to Aksornkoae (1993), mangrove zoning is one of the first steps for sustainable monitoring and management of the mangrove ecosystems. According to the international agreement on the mangrove zoning there are three main zones, i.e.: maintenance zones, protection zones, and development zones.

The Importance Value Index indicates that the ecosystem in the area is balanced and it provides resistance to disturbance, pollution and changes in environmental factors. Therefore, some mangroves can adapt and grow well in the area. In this data collection, *Sonneratia alba* and *Rhizophora apiculata* have the relatively high Importance Value Index if compared to the other mangroves species in the area (Dedy 2009). A high Fauna that live in mangrove ecosystems coves various groups, i.e.: birds, mammals, molluscs, crustaceans, and fishes. The researches of Gopal and Chauchan (2006) have prove it. In the mangrove area in Sundarbans India there are 8 species of mammals, 10 species of reptiles and 3 species of birds that live and associate with mangroves.

Based on the research results at above it is known that each different area dominantly has different species, so the ability of a species to live in a place is highly dependent on its ability to adapt to environmental conditions in the area. According to Bengen (2003) the importance of each mangrove species highly depends on the condition of mangrove growth. For mangrove plants to grow well, these require a number of supporting factors such as the availability of nutrients or organic matters, suitable substrate, stable water conditions and no mangrove exploitation from the local community. From the functions of the aquatic ecosystem, the mangrove ecosystem provides a place for spawning...
and raising various fish species, crustaceans, and other aquatic species (Nagelkerken and Van Der Velde, 2004).

The mangrove ecosystem management is an effort to maintain, protect and rehabilitate the ecosystem, so the utilization can be sustainable. According to Kenneth (1979), the goal of the mangrove ecosystem management is to achieve the maximum benefits of the forest in a versatile and sustainable way. The mangrove forest management is definitely the application of methods of the forest management and exploitation as well as forestry techniques in order to utilize the forest's natural resources.

Mangrove forest management must pay attention to the relationship between the mangrove ecosystem and its surroundings so it has a wide orientation (Barkey, 1990). If there is an over-exploitation to mangrove resources, it will make the ecosystem imbalance. For example, the exploitation of the mangrove ecosystem increases in the eleven areas of Pangpang Bay in Muncar Sub-District, Banyuwangi. The mangrove ecosystems in this area support the local economic development, so the uncontrolled logging activities have occurred for the last few years (Nazili, 2004). Otherwise, the sustainable management of mangrove ecosystems is expected to maintain the productivity and its surrounding area, so the mangrove ecosystems can be preserved. Finally, mangroves in conservation areas are not immune from degradation. It is indicated in the marine protection area of Blongko Village; the mangrove conditions are degraded for the anthropogenic activities (Schaduw, 2016a).

CONCLUSION AND SUGGESTIONS

Conclusion

The composition of the mangrove species found in 3 (three) types is, i.e. *Rhizophora apiculata*, *Sonneratia alba*, and *Rhizophora stylosa*. Of the three species, the dominant ones are *Rhizophora apiculata* and *Sonneratia alba*. The highest density value is found at the Station 1 (M01), i.e. *R. apiculata*. The highest frequency value has the highest value found at Station 2 (M02), i.e. *R. apiculata*, and the highest relative frequency is *R. apiculata*. The highest coverage value, i.e. *S. alba* can be found at the Station 2 (M02). The importance value index of *R. apiculata* at the Station 1 (M01) has the highest value and followed by the Station 3 (M03) i.e. *Sonneratia alba*, the lowest Importance Value Index analysis in all stations is *Rhizophora stylosa*. The dominant mangrove species in 3 (three) stations, Morowali District are *Rhizophora* and *Sonneratia alba* types.

Suggestions

The conservation programs and field surveys such this one can be carried out in the level of local governments, communities or local agencies to recognizing the importance of mangrove ecosystems. Re-greening and rehabilitation of the mangrove ecosystems should be continuously carried out for the preservation of coastal ecosystems. Other researches need to be carried out such as carbon potentials, biota associated with mangroves, and others that aim at conserving the mangrove ecosystems.

REFERENCES

Barkey R. 1990. Mangrove Sulawesi Selatan (Struktur, Fungi, Dan Laju Degradasi). Prosiding Seminar
Keterpaduan Antara Konservasi dan
tata Guna Lahan Basah di Sulawesi
Selatan. LIPI-Pemda Sulawesi
Selatan.

Bengen, D.G. 2000. Pedoman Teknis
Pengenalan dan Pengelolaan
Ekosistem Mangrove. Pusat Kajian
Sumberdaya Pesisir dan Lautan.
Institut Pertanian Bogor. Bogor,
Indonesia. 21 hal

Bengen D.G. 2002. Pengenalan dan
Pengelolaan Ekosistem Mangrove.
Pusat Kajian Sumberdaya Pesisir dan
Lautan - IPB. Bogor.

Pengambilan Contoh dan Analisis
Data Biofisik sumberdaya Pesisir -
Sinopsis, Pusat Kajian Sumberdaya
Pesisir dan Lautan IPB,Bogor.

Dedy. 2009. Struktur Komunitas Desa Sei
Sakat Kecamatan Negri Lama
Kabupaten LabuhanBatu Provinsi
Sumatra Utara. [Skripsi] Fakultas
Perikanan dan Ilmu Kelautan
Universitas Riau. Riau

MarineResources. Australian
Institute of Marine Science.
Townsville.

[FAO] Food Agriculture Organization.
1994. Mangrove Forest
Management Guidelines.
FAOForestry Paper 117, Rome.

Gopal B, Chauchan M. 2006. Biodiversity
and its conservation in the
Sundarban MangroveEcosystem.
Aquatic Sciences 68:338-354.

Model for Optimal Mangrove Trade
Off Between Forestry and Fishery
Production: Comparing a Dynamic
Optimization and a Simulation
Model. Ecological Modelling 112:
131–150.

Kenneth FD. 1979. Forest Management
Regulation and Valuation. Mc. Graw
Hill Book Co.Ltd. New York.

Kontu, T. 2014. Struktur Komunitas
Mangrove Bateline Desa Bahoi
Kecamatan Likupang Kabupaten
Minahasa Utara. Jurnal Pesisir dan
Laut Tropis. Vol. I No. (1) : 24-29

Kusmana, C. 2010. Respon Mangrove
terhadap Perubahan Iklim Global.
Aspek Biologi danEkologi Mangrove.
KKP. Jakarta. 8 hal

Nazli M. 2004. Strategi Pengelolaan
Ekosistem Mangrove Berbasis
Partisipasi Masyarakat di Kawasan
Teluk Pangpang-Banyuwangi.
[tesis]. Bogor : Program
Pascasarjara,Institut Pertanian
Bogor.

Nagelkerken I, Van Der Velde G. 2004.
Are Caribbean Mangroves Important
Feeding Juvenile Reef Fish From
Prog. Ser. 274: 143–151.

Djambatan- Jakarta. hal. 367

Raymond, G., Harahap, N., Soenarno.
2010. Pengelolaan Hutan Mangrove
Berbasis Masyarakat Kecamatan
Gending, Probolinggo. Agritek,

Schaduw, J.N.W. 2008. Pelestarian
Ekosistem Mangrove Pada Daerah
Perlindungan Laut Desa Blongko
Kecamatan Sinonsayang Kabupaten
Minahasa Selatan Provinsi Sulawesi
Utara. Sekolah Pascasarjana,
Institut Pertanian Bogor. 94 hal.

Schaduw, J.N.W. 2013. Small island
mitigation based on mangrove
ecosystem management in
Bunaken National Park. Aquatic
Science & Management. 1 (2), 133-
142

Schaduw, J.N.W. 2015a. Bioekologi
Mangrove Daerah Perlindungan
Laut Berbasis Masyarakat Desa
Blongko Kecamatan Sinonsayang
Kabupaten Minsel Provinsi Sulut.
Jurnal LPPM UNSRAT bidang
Sains dan Teknologi. 2 (1) 89-102

Schaduw, J.N.W. 2015b. Keberlanjutan
Pengelolaan Ekosistem Mangrove
Pulau Mantehage, Kecamatan
Wori, Kabupaten Minahasa Utara,

