Penerapan Hidden Markov Model Pada Harga Saham
Abstract
Hidden Markov Model (HMM) adalah perkembangan dari rantai Markov di mana statenya tidak dapat diamati secara langsung (tersembunyi), tetapi hanya dapat diobservasi melalui suatu himpunan pengamatan lain. Tujuan dari penelitian ini untuk memprediksi peluang kenaikan harga saham PT. Bank BNI Tbk, PT. Bank BRI Tbk, PT. Bank BTN Tbk, dan PT. Bank Mandiri Tbk dengan menggunakan Algoritma Baum Welch dalam Hidden Markov Model dan untuk memprediksi state tersembunyi (peluang naik turunnya) suatu harga saham dari PT. Bank BNI Tbk, PT. Bank BRI Tbk, PT. Bank BTN Tbk, dan PT. Bank Mandiri Tbk pada tahun 2016 dengan menggunakan decoding problem. Penelitian ini menggunakan data harga saham harian dengan periode satu minggu, satu bulan, dan satu tahun. Data yang digunakan yaitu data sekunder dari harga saham harian (penutupan) PT. Bank BNI Tbk, PT. Bank BRI Tbk, PT. Bank BTN Tbk, dan PT. Bank Mandiri Tbk untuk memprediksi peluang kenaikan harga saham dengan periode satu minggu, satu bulan dan satu tahun pada tahun 2016. Dari hasil penelitian menunjukkan bahwa Hidden Markov Model dapat digunakan untuk memprediksi peluang kenaikan harga saham dan hasil prediksi peluang kenaikan harga saham yang paling tinggi untuk satu minggu dan satu bulan yaitu PT. Bank Mandiri Tbk, sedangkan untuk satu tahun di tahun 2016 adalah harga saham PT. Bank BRI Tbk yang hanya selisih peluang sekitar 0.2 dengan bank lain. Pada algoritma Viterbi, dapat di ambil kesimpulan bahwa untuk 2016 kemungkinan harga saham dari bank PT. Bank BNI Tbk, PT. Bank BRI Tbk, PT. Bank BTN Tbk, dan PT. Bank Mandiri Tbk akan lebih banyak turun, walaupun akan lebih banyak turun tidak akan menutup kemungkinan untuk peluang kenaikan harga saham PT. Bank BRI Tbk pada tahun 2016 akan mengalami kenaikan.
Kata kunci : Hidden Markov Model, Saham Bank.
Full Text:
PDFDOI: https://doi.org/10.35799/dc.5.1.2016.12731
Refbacks
- There are currently no refbacks.
Copyright (c)
Indexed By:
e-ISSN: 2685-1083
p-ISSN: 2302-4224
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.