Integral Riemann-Stieltjes Pada Fungsi Bernilai Real
Abstract
Integral Riemann-Stieltjes merupakan generalisasi dari Integral Riemann, kedua Integral ini memiliki hubungan, juga beberapa sifat dasar pada Integral Riemann dapat diberlakukan pada Integral Riemann-Stieltjes. Misalkan f dan a adalah fungsi bernilai real yang terbatas pada interval [a,b]. Jika f ϵ R[a,b] dan f ϵ Ra[a,b], maka sifat terbatas, monoton naik, linear penjumlahan dan linear perkalian terhadap konstanta yang berlaku pada fungsi f yang terintegral Riemann, berlaku juga pada fungsi f yang terintegral Riemann-Stieltjes. Jika a(x) = x, maka integral Riemann-Stieltjes ekuivalen dengan integral Riemann, dan dapat direduksi menjadi integral Riemann ketika a mempunyai turunan dan terbatas pada interval terbuka (a,b).
Kata kunci : Fungsi Bernilai Real, Integral Riemann, Integral Riemann-Stieltjes.
Full Text:
PDFDOI: https://doi.org/10.35799/dc.6.1.2017.14987
Refbacks
- There are currently no refbacks.
Copyright (c)
Indexed By:
e-ISSN: 2685-1083
p-ISSN: 2302-4224
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.