PENGEMBANGAN SISTEM PENYEDIAAN AIR BERSIH UNTUK ZONA PELAYANAN IPA PILOLODAA KOTA GORONTALO

Mohamad Oktora Yassin Lingkan Kawet, Fuad Halim, M. I. Jasin

Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi Manado Email: oktorayassin@gmail.com

ABSTRAK

Sistem jaringan air bersih adalah suatu sistem suplai air bersih yang meliputi sistem transmisi dan reservoar. Sistem distribusi atau perpipaan dioperasikan sedemikian rupa sehingga dapat memenuhi kebutuhan air bersih.

Zona pelayanan IPA Pilolodaa terletak di Kota Barat, Kota Gorontalo. Saat ini sebagian wilayah pelayanan tersebut telah mendapat pelayanan air bersih dari PDAM, namun sebagian wilayah pelayanan tidak mendapatkan air bersih. Penyebabnya adalah wilayah tersebut berada pada dataran yang lebih tinggi dari PDAM, sehingga tekanan air untuk distribusinya terbatas.

Dengan menggunakan analisa eksponensial, hasil proyeksi jumlah penduduk zona pelayanan IPA Pilolodaa pada tahun 2032 yakni berjumlah 18.537 jiwa dengan total kebutuhan air bersih mencapai 40,164 liter/detik. Agar kebutuhan air bersih terpenuhi maka dibangun 2 reservoir, masing-masing bertipe ground reservoir dengan ukuran 11m x 11m x 3m dan 15m x 15m x 3m. Sistem distribusi menggunakan sistem kombinasi antara sistem pompa dan gravitasi, dengan hasil perhitungan diameter pipa transmisi ke masing-masing reservoar adalah 175 mm dan 200 mm, untuk pipa distribusi bervariasi antara 50 mm - 200 mm. Untuk mendesain sistem penyediaan air bersih digunakan software EPANET 2.0.

Kata kunci: Air bersih, Perpipaan, Sistem Penyediaan.

PENDAHULUAN

Air merupakan kebutuhan yang sangat penting dalam kelangsungan hidup manusia, baik dalam pertanian, kehidupan rumah tangga, hingga perkantoran. Untuk memenuhi kebutuhan air masyarakat, maka telah diadakan sistem penyediaan air bersih terutama di daerah perkotaan maupun pedesaan.

Laju pertumbuhan penduduk sangat berpengaruh dalam perencanaan air bersih. Semakin banyak penduduk semakin besar pula pemanfaatan air yg diperlukan.

Demikian juga dengan kota Gorontalo yang mengalami perkembangan pesat, karena Propinsi Gorontalo merupakan salah satu propinsi termuda di Indonesia. Sehingga tahun ke tahun mengalami pertumbuhan penduduk yang tinggi terutama pendatang dari luar daerah Gorontalo. Dengan adanya pertumbuhan penduduk ini PDAM kota Gorontalo akan mengalami kendala dalam ketersediaan air bersih untuk dapat mencukupi kebutuhan sehari-hari.

Dengan mengandalkan pompa 10 liter/detik dan 2 x 5 jam, pompa bekerja untuk menampung air baku dari sungai Bolango ke bak pengolahan air bersih kemudian di tampung di bak penampungan (reservoir). Seiring bertambahnya penduduk, air bersih vang dihasilkan oleh IPA Pilolodaa untuk kebutuhan sehari-hari sudah tidak mencukupi. Dan dalam pendistribusiannya, beberapa wilayah yang datarannya lebih tinggi dari IPA mulai resah akibat sedikit sekali mendapatkan air bersih dari PDAM.

Agar konsumen dan calon konsumen pada masa mendatang dapat memanfaatkan air bersih dari PDAM, maka diperlukan pengembangan sistem penyediaan air bersih yang sudah ada untuk memenuhi kebutuhan air bersih wilayah IPA Pilolodaa.

Dengan memanfaatkan sungai Bolango yang debitnya mencapai ±175 liter/detik sebagai sumber air baku, IPA Pilolodaa dapat memproduksi lebih dari pompa produksi yakni lebih dari 10 liter/detik. Dapat juga dengan menambah reservoir

lainnya yang dapat ditempatkan ditempat yang lebih tinggi, kemudian untuk distribusinya dengan sistem gravitasi atau bisa disebut dengan Dual System.

Tujuan Penelitian

- Mengetahui jumlah kebutuhan air bersih pada daerah pelayanan PDAM kota Gorontalo IPA Pilolodaa untuk tahun 2012 sampai 2032 (20 tahun).
- 2. Pengembangan sistem penyediaan air bersih yang tepat sehingga dapat memenuhi kebutuhan air bersih zona pelayanan IPA Pilolodaa.

Manfaat Penelitian

Penelitian ini diharapkan menjadi masukan bagi pihak-pihak yang berkompeten, sehingga penduduk dapat memenuhi kebutuhan air bersihnya terutama bagi penduduk yang berada pada wilayah dataran tinggi.

LANDASAN TEORI

Ketersediaan Air

Didalam perencananaan sistem pelayanan air bersih sangat diperlukan informasi mengenai sumber air. Dimana nantinya sumber air tersebut memiliki debit yang cukup untuk mengalirkan air kepada konsumen. Selain informasi mengenai debit yang tersedia dari sumber air, sangat diperlukan juga data-data atau informasi lainnya, seperti: kualitas air, jarak antara sumber air dengan konsumen, keadaan topografi dilokasi sumber air, yang mana nantinya data-data tersebut bisa membantu didalam pengembangan sistem pelayanan air bersih yang baru. (Triatmodjo, 1996).

Kebutuhan Air Bersih Kebutuhan Air Domestik

Kebutuhan air domestik adalah kebutuhan air bersih bagi para penduduk untuk kepentingan kehidupan sehari-hari.

Adapun perhitungan proyeksi jumlah penduduk terdiri dari beberapa metode:

- a. Analisa regresi linier
- b. Analisa Regresi Logaritma
- c. Analisa Regresi Eksponensial

Kebutuhan Air Non-Domestik

Kebutuhan air non-domestik adalah kebutuhan air bersih untuk sarana dan prasarana daerah yang teridentifikasi ada atau bakal ada berdasarkan rencana tata ruang.

Kehilangan Air

Kehilangan air pada umumnya disebabkan karena adanya kebocoran air pada pipa transmisi dan distribusi serta kesalahan dalam pembacaan meter.

Sistem Jaringan Air Bersih

Sistem jaringan air bersih adalah suatu sistem untuk menyalurkan air bersih yang berawal dari pengambilan air baku, hingga sampai dipelanggan sebagai air bersih yang memenuhi standar air bersih. (Triatmadja dan Radianta, 2007).

Analisa Jaringan Pipa Distribusi Kehilangan Tenaga

Untuk perhitungan kehilangan tenaga dari pompa dapat menggunakan rumus:

$$H_{\text{Total}} = h_f + \Delta h \tag{1}$$

$$H_{\rm f} = \frac{10,675 \, x \, L \, x \, Q^{1,852}}{C^{1,852} \, D^{4,87}} \tag{2}$$

dengan:

 $H_{Total} = Total head (m)$

hf = Kehilangan tenaga (m)

 Δh = Beda tinggi (m)

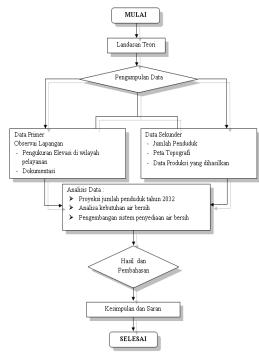
Q = Debit (m^3/det)

C = Koefisien Hazen-Williams

D = Diameter Pipa (m)

L = Panjang Pipa (m)

(B. Triatmodjo, 1996)


Desain Sistem Distribusi Menggunakan EPANET

EPANET adalah program komputer yang menggambarkan simulasi hidrolis dan kecenderungan kualitas air yang mengalir di dalam jaringan pipa. Jaringan itu sendiri terdiri dari Pipa, Node (titik koneksi pipa), pompa, katub, dan tangki air atau reservoir.

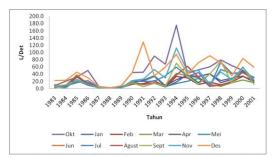
METODE PENELITIAN

Lokasi penelitian berada pada zona pelayanan IPA Pilolodaa, yakni pada Kecamatan Kota Barat, Kota Gorontalo yang melayani 5 (lima) kelurahan yaitu, Kelurahan Dembe I, Kelurahan Lekobalo, Kelurahan Pilolodaa, Kelurahan Buliide, dan Kelurahan Tenilo. Hingga bulan juni 2012, yang tercatat di kantor lurah Kota Barat jumlah penduduk pada zona pelayanan IPA Pilolodaa yakni berjumlah 14.095 penduduk.

Bagan Alir Penelitian

Gambar 1. Bagan Alir Penelitian

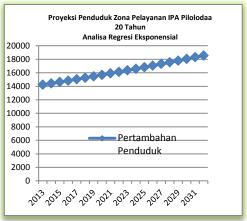
HASIL DAN PEMBAHASAN


Ketersediaan Air

Debit sumber air (Sungai Bolango) yang digunakan di dalam penelitian ini merupakan debit hasil pengukuran langsung yang dilakukan oleh Peneliti Bidang Hidro-Geologi, Badan Pengkajian dan Penerapan Teknologi, yaitu Hidir Tresnadi selama kurung waktu tahun 1983-2001. Dimana lokasi pengukuran dilakukan tepat di bawah Jembatan Buladu sungai Bolango. Adapun pengukuran tersebut dilakukan pada saat musim kemarau. Berdasarkan pengukuran langsung debit sungai, diperoleh debit air baku pada sungai Bolango sebesar ±175 liter/detik.

Proyeksi Jumlah Penduduk

Proyeksi Jumlah Penduduk dengan analisa regresi linear memiliki nilai korelasi (R) 0,968, analisa regresi logaritma memiliki nilai korelasi (R) 0,888, analisa regresi eksponential memiliki nilai korelasi (R) =


0.970. Syarat: $-1 \le r \le 1$. Sehingga dari hasil perhitungan dan perbandingan ketiga Analisa Regresi di atas, Maka proyeksi jumlah penduduk yang akan digunakan yaitu analisa regresi eksponensial dengan nilai korelasi (R) 0.970. Dimana analisa regresi linear memiliki nilai korelasi yang paling mendekati 1.

Gambar 2: Rasio Debit Bulanan Sungai Bolango Sumber : Hidir Tresnadi (2008)

Tabel 2. Proyeksi Jumlah Penduduk Zona Pelayanan IPA Pilolodaa.

·	Tahun	X	Jumlah Penduduk (jiwa)
	2013	6	14.289
	2014	7	14.486
	2015	8	14.686
	2016	9	14.889
	2017	10	15.094
	2018	11	15.302
	2019	12	15.513
	2020	13	15.727
13058,42.e^0,014.x	2021	14	15.944
	2022	15	16.164
	2023	16	16.387
	2024	17	16.613
	2025	18	16.842
	2026	19	17.074
	2027	20	17.310
	2028	21	17.549
	2029	22	17.791
	2030	23	18.036
	2031	24	18.285
	2032	25	18.537

Gambar 2. Grafik Proyeksi Penduduk Zona Pelayanan IPA Pilolodaa 20 Tahun Analisa Regresi Eksponensial

Kebutuhan Air Domestik dan Non Domestik Serta Kehilangan Air

Tabel 3. Kebutuhan Air Total

Tahun	Debit Kebutuhan Air Domestik (liter/det)	Debit Kebutuhan Air Non- Domestik (liter/de)	Kehilangan Air (liter/det)	Debit Total (Qt) (liter/det)
	(Qd)	(Qn)	(Qa)	Qt = Qd + Qa $Qn + Qa$
2012	21.208	4.242	5.090	30.539
2013	22	4.300	5.160	30.960
2014	22	4.359	5.231	31.387
2015	22.097	4.419	5.303	31.820
2016	22.402	4.480	5.377	32.259
2017	23	4.542	5.451	32.704
2018	23.024	4.6049	5.5258	33.155
2019	23	4.668	5.602	33.612
2020	23.664	4.733	5.679	34.076
2021	24	4.798	5.758	34.546
2022	24.321	4.864	5.837	35.022
2023	25	4.9313	5.9175	35.505
2024	24.997	4.999	5.999	35.995
2025	25	5.068	6.082	36.491
2026	25.691	5.138	6.166	36.995
2027	26	5.209	6.251	37.505
2028	26.404	5.281	6.337	38.022
2029	27	5.354	6.424	38.547
2030	27.138	5.428	6.513	39.078
2031	28	5.502	6.603	39.617
2032	27.891	5.578	6.694	40.164

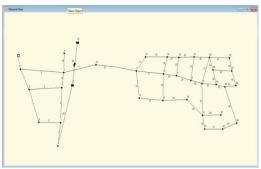
Kondisi Eksisting

Gambar 3. Kondisi Eksisting di IPA Pilolodaa

Sistem Plan Penyediaan Air Bersih

Rencana sistem penyediaan air bersih zona pelayanan IPA Pilolodaa terdiri dari:

- Air baku diambil dari air sungai Bolango dengan elevasi +9 m.
 Air dari sungai Bolango langsung disadap
 - oleh bangunan penyadap air atau intake dengan menggunakan pompa berkemampuan 70 liter/detik.
- 2. Air baku kemudian diolah oleh WTP kemudian ditampung terlebih dahulu pada bak penampung pada elevasi +25 m. Sumber air yang digunakan berasal dari sungai Bolango, yang mana kualitas air

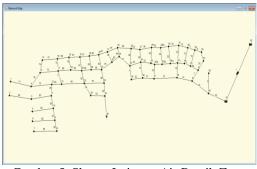

- dari sungai tidak terlalu jernih. Sehingga perlu dibuat suatu instalasi pengolahan untuk untuk mengolah air tersebut menjadi air bersih.
- 3. Pipa transmisi dari Intake menuju WTP. Pipa transmisi air baku dari intake sampai WTP menggunakan pipa jenis PVC
- 4. Pipa distribusi dari WTP ke Reservoir Pembagi
- 5. Reservoir/bak penampung Untuk zona IPA Pilolodaa direncanakan dibuat Reservoir tambahan yang akan dibangun diwilayah perbukitan dengan elevasi 40 m dari atas permukaan bumi.
- 6. Pipa distribusi dari reservoir ke pelanggan/hidran umum

Analisa dan Desain Sistem Plan Jaringan Perpipaan

Model Jaringan Air Bersih Zona IPA Pilolodaa dengan Epanet 2.0

Tabel 4. "Node Parameter" Analisa Sistem Jaringan Air Bersih Reservoir I

	Bb × #4	₹ ?{] 🚾 🗉	n p⊕l II	4.7. ⊕ Q	0 11 0
	Elevation	Base Demand	Demand	Head	Pressure
Node ID	m	LPS	LPS	m	m
Junc 1	9	0.74	0.74	20.14	11.1
June 2	13	0.74	0.74	20.15	7.1
June 3	15	0.74	0.74	20.14	5.1
June 4	12	0.74	0.74	19.64	7.6
June 5	14	0.74	0.74	20.27	6.2
Junc 6	15	0.74	0.74	20.99	5.9
June 7	16	0.74	0.74	21.94	5.9
Junc 8	16	0.74	0.74	21.89	5.8
Junc 9	20	0.74	0.74	23.52	3.5
June 10	13	0.74	0.74	18.73	5.7
Junc 11	10	0.74	0.74	16.96	6.9
June 12	10	0.74	0.74	16.44	6.4
June 13	8	0.74	0.74	16.62	8.6
June 14	6	0.74	0.74	16.09	10.0
June 15	7	0.74	0.74	16.11	9.1
June 16	5	0.74	0.74	15.86	10.8
June 17	7	0.74	0.74	15.86	8.8
June 18	9	0.74	0.74	16.09	7.0
June 19	7	0.74	0.74	15.71	8.7
June 20	6	0.74	0.74	15.69	9.0
June 21	5	0.74	0.74	15.67	10.6
June 28	4	0.74	0.74	15.49	11.4
June 29	6	0.74	0.74	15.54	9.5
June 30	5	0.74	0.74	15.53	10.9
June 31	5	0.74	0.74	15.30	10.3
June 32	4	0.74	0.74	15.20	11.2
June 33	4	0.74	0.74	15.39	11.3
June 34	5	0.74	0.74	15.42	10.4
June 35	5	0.74	0.74	15.42	10.4
June 36	4	0.74	0.74	15.32	11.3
June 37	4	0.74	0.74	15.31	11.3
June 38	4	0.74	0.74	15.28	11.3
June 39	5	0.74	0.74	15.29	10.3
Junc 40	4	0.74	0.74	15.19	11.1
Resvr 22	25	#N/A	75.80	25.00	0.0
Resvr 23	9	#N/A	-100.96	9.00	0.0



Gambar 4. Skema Jaringan Air Bersih Zona Pelayanan IPA Pilolodaa Untuk Reservoir I

Tabel 5. "Node Parameter" Analisa Sistem Jaringan Air Bersih Reservoir II

		∛ ?{] □		≥ાં⊈ ⊕ Q	
Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	Pressure m
June 1	15	0.74	0.74	28.96	13.96
June 2	22	0.74	0.74	28.84	6.84
June 3	22	0.74	0.74	28.85	6.85
June 4	19	0.74	0.74	29.01	10.01
June 5	21	0.74	0.74	28.72	7.72
June 6	22	0.74	0.74	28.70	
June 7	20	0.74	0.74	28.70	
Junc 8	20	0.74	0.74	28.79	8.79
June 9	21	0.74	0.74	28.80	7.8
June 10	22	0.74	0.74	28.82	6.83
June 11	20	0.74	0.74	28.86	8.8
June 12	20	0.74	0.74	29.01	9.0
June 13	21	0.74	0.74	29.19	
June 14	10	0.74	0.74	29.11	19.1
June 15	11	0.74	0.74	29.13	18.1
June 16	10	0.74	0.74	29.19	19.1
June 17	17	0.74	0.74	29.19	12.1
June 18	10	0.74	0.74	29.28	19.2
June 19	18	0.74	0.74	29.29	11.2
June 20	18	0.74	0.74	29.56	11.5
June 21	10	0.74	0.74	29.41	19.4
June 22	23	0.74	0.74	29.66	6.6
June 23	21	0.74	0.74	29.87	8.8
June 24	20	0.74	0.74	29.82	9.8
June 25	22	0.74	0.74	29.75	7.7
June 26	22	0.74	0.74	29.82	7.8
June 27	13	0.74	0.74	30.17	17.1
June 28	16	0.74	0.74	29.95	13.9
June 29	9	0.74	0.74	30.00	21.0
June 30	10	0.74	0.74	30.19	20.15
June 31	7	0.74	0.74	30.77	23.7
June 32	9	0.74	0.74	30.81	21.8
June 33	6	0.74	0.74	31.64	25.6
June 34	13	0.74	0.74	31.64	18.6
June 35	16	0.74	0.74	32.45	16.4
June 36	7	0.74	0.74	32.43	25.4
June 37	6	0.74	0.74	33.03	27.0
June 38	13	0.74	0.74	33.05	20.0
June 39	26	0.74	0.74	32.66	6.6
June 40	25	0.74	0.74	33.13	8.13
June 41	27	0.74	0.74	33.93	6.90
June 42	15	0.74	0.74	33.86	18.8
June 43	16	0.74	0.74	33.58	17.5
June 44	7	0.74	0.74	33.58	26.5
June 45	20	0.74	0.74	34.04	14.0
Junc 46	20	0.74	0.74	34.58	14.5
June 47	14	0.74	0.74	35.24	21.2
June 48	30	0.74	0.74	35.50	5.5
June 49	6	0.74	0.74	34.03	28.03
June 50	7	0.74	0.74	34.58	27.58
June 51	9	0.74	0.74	35.18	26.18
Junc 58	10	0.74	0.74	35.37	25.37
June 59	11	0.74	0.74	35.56	24.56
June 60	9	0.74	0.74	35.78	26.78
Junc 61	16	0.74	0.74	36.08	20.08
June 62	30	0.74	0.74	36.65	6.65
June 63	20	0.74	0.74	35.68	15.68
June 64	19	0.74	0.74	35.40	16.40
June 65	35	0.74	0.74	38.29	3.29
June 66	38	0.74	0.74	38.29	0.29
June 67	32	0.74	0.74	37.18	5.18
	40	#N/A	-8.10	40.00	0.00
Resvr 54					

Auto-Length Off LPS 100% X,Y: 4366.67, 10833.33

Gambar 5. Skema Jaringan Air Bersih Zona Pelayanan IPA Pilolodaa Untuk Reservoir II

Pompa dan Pipa Transmisi

Perhitungan untuk pipa transmisi dan pompa centrifugal dilakukan secara manual dengan menggunakan rumus Hazen-Williams:

$$H_{\rm f} = \frac{10,675Q^{1,852}}{C_{hw}^{1,85} \times D^{4,87}}$$

Pipa Hisap

Diketahui:

 H_2 (Beda Tinggi) = 10 m

 L_1 (Panjang Pipa) = 22 m

Q (Debit) = $0.07 \text{ m}^3/\text{det}$

D (Diameter) = 7 inch = 0.175 m

 C_{hw} (Koefisien H-W) = 150

 $H_f = \frac{10,675 \times 0,07^{1,852}}{150^{1,852} \times 0,175^{4,87}} \times 22 = 0,773 \text{ m}$

 $H_f = 0.773 \text{ m} \dots H_f < H (OK)$

 $H_s = H_f + H_2 = 0.773 + 10 = 10.773 \text{ m}$

Pipa keluar atau pipa transmisi

 $H_2 = 20 \text{ m}$

 $L_1 = 170 \text{ m}$

 $Q = 70.0 \text{ ltr/det} = 0.07 \text{ m}^3/\text{det}$

D = 7 inch = 0.175 m

 $C_{hw} = 150$

 $H_f = \frac{10,675 \times 0,07^{1,852}}{150^{1,852} \times 0,175^{4,87}} \times 170 = 5,97 \text{ m}$

 $H_f = 5.97 \text{ m} \dots Hf < H (OK)$

 $HD = H_f + H_2 = 5.97 + 20 = 25.97 \text{ m}$

Pipa Distribusi dan Reservoir Pembagi

Pipa distribusi yang digunakan untuk mendistribusikan air dari WTP menuju reservoir pembagi adalah jenis pipa PVC. Perhitungan pipa distribusi dari WTP ke reservoir pembagi dilakukan secara manual dengan menggunakan rumus Hanzen—Williams.

Hasil pengukuran Reservoir I diketahui:

 $H_1 = 25 \text{ m}$

 $H_2 = 20 \text{ m}$

 $L_1 = 16 \text{ m}$

Q = 70,0 ltr/det = 0,07 m³/det
D = 7 inch = 0,175 m

$$C_{hw}$$
 = 150
 $H_f = \frac{10,675 \times 0,07^{1,852}}{150^{1,852} \times 0,175^{4,87}} \times 16 = 0,562 \text{ m}$
 $H_f = 0,562 \text{ m} \dots H_f < \Delta H \text{ (OK)}$

Untuk menghitung kecepatan aliran dalam pipa digunakan persamaan:

$$V = 0.3545 C_{HW} D^{0.63} S^{0.54}$$

$$S = \frac{H_f}{L}$$

$$S = \frac{0,562}{16} = 0,0351$$

$$V = 0,3545 \times 150 \times 0,175^{0,63 \times} 0,0351^{0,54}$$

$$= 2,906 \text{ m/det}$$

Hasil pengukuran Reservoir II diketahui:

$$\begin{array}{lll} H_1 &= 50 \text{ m} \\ H_2 &= 22 \text{ m} \\ L_1 &= 704 \text{ m} \\ Q &= 70.0 \text{ ltr/det} = 0.07 \text{ m}^3/\text{det} \\ D &= 8 \text{ inch} = 0.200 \text{ m} \\ C_{\text{hw}} &= 150 \\ H_f &= \frac{10.675 \times 0.07^{1.852}}{150^{1.852} \times 0.200^{4.87}} \times 704 = 12.9 \text{ m} \\ H_f &= 12.9 \text{ m} \dots H_f < \Delta H \text{ (OK)} \\ S &= \frac{H_f}{L} = \frac{12.9}{704} = 0.0183 \\ V &= 0.3545 \times 150 \times 0.200^{0.63 \times} 0.0183^{0.54} \\ V &= 2.224 \text{ m/det} \end{array}$$

Analisa dan Desain Hidrolis Reservoir

Reservoir dibuat karena aliran air yang terjadi tidaklah statis. Pada jam tertentu aliran air yang dibutuhkan lebih kecil dari debit rata-rata akan tetapi kadang pada jam sibuk aliran air yang dibutuhkan lebih besar dari debit kebutuhan rata-rata. Oleh karena itu dibutuhkan reservoir penampung agar menanggulangi aliran air yang tidak statis ini.

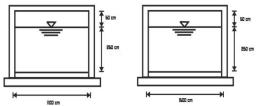
Reservoir I

Kapasitas reservoir diambil sebesar 20% dari total kebutuhan harian maksimum yaitu 14,926 liter/detik atau 0,014926 m³/detik.

Kapasitas reservoir:

$$= 0.20 \times 0.014926 \text{ m}^3/\text{detik } \times (24\times3600)$$

= 257.921 m³


Dimensi Reservoir I

=
$$(11 \times 11 \times 2.5)$$
m > Kapasitas reservoir
= 302.5 m³ > 257.921 m³ ..OK!

Reservoir II

Kapasitas reservoir diambil sebesar 20% dari total kebutuhan harian maksimum yaitu 28,453 liter/detik atau 2458,3392 m³/hari.

Kapasitas reservoir = 0,20 x 0,028453 m³/dtk x (24x3600) = 491,668 m³ Dimensi Reservoir II = (15 x 15 x 2,5) m > Kapasitas reservoir = 562,5 m³ > 491,668 m³ ..OK!

Gambar 6. Desain Dimensi Reservoir

Gambar 7. Contoh Bagian-bagian Reservoir

Analisa dan Desain Hidrolis Hidran Umum

Standar yang digunakan dalam perencanaan hidran umum yang akan dibangun adalah menggunakan standar sesuai kriteria perencanaan Ditjen Cipta Karya dalam Pedoman Perencanaan Air Bersih ditetapkan bahwa untuk kategori kota dengan jumlah penduduk rata-rata 3.000 – 20.000 jiwa maka jumlah jiwa yang dilayani untuk satu hidran umum (HU) adalah 100 - 200 jiwa. Untuk IPA Pilodaa digunakan 195 jiwa persatu HU. Jumlah HU daerah layanan sistem jaringan air bersih dihitung sebagai berikut:

Jumlah penduduk

Jumlah HU =
$$\frac{18537 \text{ jiwa}}{\frac{18537}{200}}$$

= 92,68 \approx 95 hidran

Dan kebutuhan air setiap HU bisa dihitung berdasarkan jumlah HU dan kebutuhan air bersih pada saat jam puncak, yakni dalam rumus sebagai berikut :

$$Q_{HU} = rac{kebutuhan\ jam\ puncak}{jumlah\ hidran}$$

Kebutuhan air jam puncak = 70.286 liter/detik Base Demand tiap HU

$$=\frac{70.286}{95} = 0.74 \text{ liter/detik/HU}$$

Dengan demikian, setiap hidran direncanakan dapat melayani 195 jiwa dengan kebutuhan rata-rata air di tiap hidran sebesar 0,74 liter/detik.

Gambar 8. Detail Planing Sistem Penyediaan Air Bersih Zona Pelayanan IPA Pilolodaa

PENUTUP

Dari hasil analisa diperoleh kesimpulan sebagai berikut:

1. Perencanaan sistem penyediaan air bersih direncanakan berdasarkan kebutuhan

- debit penduduk zona pelayanan IPA Pilolodaa Kota Gorontalo pada jam puncak sampai dengan tahun 2032 yaitu sebesar 40.164 liter/detik.
- 2. Pengembangan sistem penyediaan air bersih yang tepat sehingga dapat memenuhi kebutuhan air bersih zona pelayanan IPA Pilolodaa sesuai analisa yakni Reservoir yang digunakan dibuat menjadi 2 (dua) buah, yakni untuk Reservoir I berkapasitas 302,5 m³ dengan dimensi 11 m x 11 m x 3 m, sedangkan untuk Reservoir II berkapasitas 562 m³ dengan dimensi reservoirnya 15 m x 15 m x 3 m.
- 3. Dengan adanya pengembangan ini dapat dipastikan hingga tahun 2032 masyarakat yang berada di zona pelayanan IPA Pilolodaa tidak akan kekurangan air bersih dari PDAM.

DAFTAR PUSTAKA

Anonymouos, 1990. Pedoman Teknis Penyediaan Air Bersih IKK Pedesaan. Direktorat Jenderal Cipta Karya Departemen PU, Jakarta.

Buku Panduan Manual Program Epanet 2.0

Hidir Tresnadi, 2008, http://www.academia.edu/1425978/PENGELOLAAN_DAS_DENGAN
PENDEKATAN_EKOSISTEM_STUDI_KASUS_ANALISIS_DEBIT_ SUNGAI_
BONE DAN BOLANGO DI KABUPATEN BONE BOLANGE.

Triatmadja, Radianta., 2007. Sistem Penyediaan Air Minum Perpipaan, Yogyakarta.

Triatmodjo, Bambang., 1993. Hidraulika II, Betta Offset, Yogyakarta.