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ABSTRACT 

A study in Rotationally Symmetric Harmonic Maps has been conducted in the past few decades. 

One of its well-known study is its application from a ball into a sphere in three dimensional space. 

This has been shown to be accurate by showing its energy function. This paper will show how to 

find an energy function for this case. 
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FUNGSI ENERGI DARI PEMETAAN ROTASI HARMONIK SIMETRIS DARI BOLA 

KE SPHERE 

 

ABSTRAK 

Studi tentang Pemetaan Rotasi Harmonik yang simetris telah dilakukan selama beberapa dekade 

terakhir ini. Salah satunya yang paling dikenal adalah aplikasinya dari bola ke sphere dalam ruang 

dimensi tiga. Hal ini telah dapat ditunjukkan dengan akurat dengan membuktikan fungi energinya. 

Tulisan ini akan menunjukkan cara menemukan fungsi energi untuk masalah ini.   

Kata-kata kunci: Pemetaan Rotasi Harmonik Simetris, Fungsi Energi 

 

 

Introduction 

 

An object with rotational symmetry is an 

object that looks the same after a certain 

amount of rotation. A map between two 

compact Riemannian manifolds is a 

harmonic map if it is a critical point for the 

energy functional. For example, a map from 

a circle to the equator of standard 2-sphere is 

a harmonic map, and so are the maps that 

take the circle and map it around the equator 

𝑛 times, for any integer 𝑛.  

 

Let 𝑀 be a 𝑛-dimensional Riemannian 

manifold (with or without boundary) with a 

smooth Riemannian metric 𝑔. In a local 

coordinates around fixed point 𝑝 ∈ 𝑀, 𝑔 can 

be represented by 

𝑔 = 𝑔𝑖𝑗𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 , 

where 𝑔𝑖𝑗 is a positive definite symmetric 

𝑛 × 𝑛 matrix. Let (𝑔𝑖𝑗) = (𝑔𝑖𝑗)
−1

 be the 

inverse matrix of (𝑔𝑖𝑗) and the volume 

element of (𝑀; 𝑔) is 

𝑑𝑣𝑔 = √|𝑔|𝑑𝑥, 

where |𝑔| = det(𝑔𝑖𝑗). Let 𝑁 be another 𝑙-

dimensional compact Riemmanian manifold 

(without boundary) with a smooth 

Riemmanian metric ℎ. 

 

For a map 𝑢: 𝑀 → 𝑁, its Dirichlet energy 

functional is defined by 

𝐸(𝑢) = ∫ 𝑒(𝑢)
𝑀

𝑑𝑣𝑔 

where the density function 𝑒(𝑢) is given by  

𝑒(𝑢)(𝑥) =
1

2
|∇𝑢(𝑥)|2

=
1

2
∑ 𝑔𝑖𝑗(𝑥)ℎ𝛼𝛽(𝑢(𝑥))

𝛼,𝛽,𝑖,𝑗

𝜕𝑢𝛼

𝜕𝑥𝑖

𝜕𝑢𝛽

𝜕𝑥𝑗
 

 

In this case, the harmonic map was 

considered to be from unit ball to unit sphere 

which satisfies a variational problem in 

Euler equation form: 

−Δ𝑢 = |∇𝑢|2. 𝑢.             (1.1) 

 

Let 𝜅 ≥ 0 be an upper bound for the 

sectional curvature of 𝑁 and 𝐾𝑝(𝑞) the open 

geodesic ball in 𝑁 with center 𝑞 and radius 

𝜌. Assuming essentially the size restriction 
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𝑓(𝜕𝑀) ⊂ 𝐾𝑝(𝑞),  𝜌 ≤
𝜋

2√𝜅
,                     (1.2) 

 

Hilderbrandt et. Al. [4] showed existence of 

a “small” smooth harmonic maps satisfying 

(1.2). This was shown by considering 

solution of a Dirichlet problem, which is 

smooth in the interior and minimizes the 

energy in the class in 𝐾𝑝(𝑞) having the 

boundary values 𝑓. In the case where 𝑁 is 

the standard sphere the smallness condition 

restricts the image of the boundary values 

and the solution to an open half-sphere.  

 

Suppose Bn
 denotes the compact unit ball in 

the Euclidean space Rn
, and Sn

 the unit 

sphere in Rn+1
. Select the point given by the 

(𝑛 + 1)-th standard base vector 𝑒𝑛+1 in 

𝑅𝑛+1 as northpole of the sphere. Every map 

𝑢: 𝐵𝑛 → 𝑆𝑛 can be written in the form 

𝑢(𝑥) = (𝑔(𝑥). sin 𝜑(𝑥), cos 𝜑(𝑥))          

(1.3) 

with maps 

𝜑: 𝐵𝑛 → [0, 𝜋],   𝑔: 𝐵𝑛 → 𝑆𝑛−1 ⊂ 𝑅𝑛 

𝜑 measures the Riemannian distance from 

𝑢(𝑥) to the northpole on the sphere and is 

called radius function of 𝑢. The map 𝑔 is 

uniquely defined by 𝑢 except for points x 

where 𝑢(𝑥) = ±𝑒𝑛+1. A map 𝑢: 𝐵𝑛 → 𝑆𝑛 is 

rotationally symmetric if and only if  

𝑔(𝑥) =
𝑥

|𝑥|
 and 𝜑(𝑥) = 𝛷(|𝑥|)               (1.4) 

   

 

Notation and Definition 

 

Euclidean Scalar product and norm 

For the (column) vectors: 

𝒖 = (𝑢1, 𝑢2, … 𝑢𝑛)𝑇  and 

𝒗 = (𝑣1, 𝑣2, … 𝑣𝑛)𝑇 lying in the Euclidean 

space R
n
 , the scalar (dot) product between 𝒖 

and 𝒗 is: 

〈𝒖, 𝒗〉 = 𝒖. 𝒗 

= 𝑢1𝑣1 + 𝑢2𝑣2 + ⋯ + 𝑢𝑛𝑣𝑛 = ∑ 𝑢𝑖𝑣𝑖

𝑛

𝑖=1

 

and the scalar product of a vector to itself: 

〈𝒗, 𝒗〉 = 𝒗. 𝒗 = 𝑣1
2 + 𝑣2

2 + ⋯ + 𝑣𝑛
2 = ∑ 𝑣𝑖

2

𝑛

𝑖=1

 

 

Consequently, the Euclidean norm of a 

vector is found by taking the square root: 

‖𝒗‖ = √𝒗. 𝒗 = √𝑣1
2 + 𝑣2

2 + ⋯ + 𝑣𝑛
2

= (∑ 𝑣𝑖
2

𝑛

𝑖=1

)

1
2

 

 

Weak Derivative 

 

Consider the following notation: 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛,     𝜕𝑗𝑢 =
𝜕𝑢

𝜕𝑥𝑗
 

𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛) ∈ 𝑍𝑛,    is a multi index 

|𝛼| = 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑛,     𝜕𝛼𝑢

=
𝜕|𝛼|

𝜕𝑥1
𝛼1𝜕𝑥2

𝛼2 … 𝜕𝑥𝑛
𝛼𝑛

 

∇𝑢 = (𝜕1𝑢, … , 𝜕𝑛𝑢),              |∇𝑢|

= (∑|𝜕𝑗𝑢|
2

𝑛

𝑗=1

)

1
2

 

 

Definition 3 (Weak Derivative) [4] 

Let 𝛼 be a multi-index. Suppose that 

𝑢, 𝑣 ∈ 𝐶0
∞(Ω) and  

∫ 𝑢(𝑥)𝜕𝛼𝜂(𝑥)𝑑𝑥
Ω

= (−1)|𝛼| ∫ 𝑣(𝑥)𝜂(𝑥)
Ω

𝑑𝑥, ∀𝜂 ∈ 𝐶0
∞(Ω) 

Then 𝑣 is called the weak partial derivative 

of 𝑢 in Ω, and is denoted by 𝜕𝛼𝑢.  

 

Sobolev spaces  l

pW   and  

 

Definition 4 (definition of  l

pW ) [2] 

Suppose that 𝑢 ∈ 𝐿𝑝 ( ) and there exist 

weak derivatives 𝜕𝛼𝑢 for any 𝛼 with |𝛼| ≤ 𝑙  
(all derivatives up to order 𝑙), such that 

𝜕𝛼𝑢 ∈ 𝐿𝑝 ( ), |𝛼| ≤ 𝑙. 

Then we say that 𝑢 ∈  l

pW . 

The standard norm in   l

pW : 

|𝑢|
𝑊𝑝

𝑙(Ω) = (∫ ∑ 𝜕𝛼𝑢𝑝

|𝛼|≤𝑙

 𝑑𝑥


)

1
𝑝

 

 

Definition 5 (definition of ) 

The closure in the norm of 𝑊𝑝
𝑙(Ω) is denoted 



Montolalu: Energy Functional ………   37 

 

by . 

So,  is a subspace in the space 

𝑊𝑝
𝑙(Ω). 

For = 2 , 𝑊2
𝑙(Ω), another notation 𝐻𝑙(Ω) is 

often used: 𝑊2
𝑙(Ω) = 𝐻𝑙(Ω). 

 

Energy Functional  

 

For 𝐵𝑛 denotes the compact unit ball in the 

Euclidean space Rn
, and Sn

 the unit sphere in 

Rn+1
, the subset of mappings of the Sobolev 

space H
1 Bn,Rn+1( ) , satisfying     𝑢(𝑥) ∈

𝑆𝑛, ∀𝑥 ∈ 𝐵𝑛 is denoted by 

 nnn SBH ,1S  [2]. 

 

For 𝑢, 𝑣 ∈H
1 Bn,Rn+1( )  the weak 

derivative, 𝜕𝛼, can be denoted in the 

Euclidean scalar and norm as follows: 
〈∇𝑢, ∇𝑣〉 = ∑ 〈𝜕𝛼𝑢, 𝜕𝛼𝑣〉𝑛

𝛼=1 , and |∇𝑢| =

〈∇𝑢, ∇𝑣〉
1
2 

 

The Dirichlet energy functional for 𝑢 ∈ 
n

S  

is defined by: 

E u( ) = En u( ) =
1

2
Ñu

2

Bn
ò dx                       

(2.1) 

 

 

Harmonic Maps 

 

Recall that a Laplace equation on an open 

domain Ω of R
n
 is defined by 

∆𝑢 = 0 

where 

∆=
𝜕2

(𝜕𝑥1)2 + ⋯ +  
𝜕2

(𝜕𝑥𝑛)2 , (𝑥1, … , 𝑥𝑛) ∈ Ω 

 

In this project, we consider a variational 

problem with Euler equation:  

−Δ𝑢 = |∇𝑢|2. 𝑢.                                     (2.2) 

 

 

Definition 6 (Harmonic Map) [3,5] 

A smooth map 𝑢 from 𝐵𝑛 to 𝑆𝑛 is said to be 

harmonic map if 𝑢 is a critical point of the 

Dirichlet energy functional (2.1), i.e. it 

satisfies (2.2).  

 

To see the harmonic map in this project, 

consider the following problem. 

 

Dirichlet problem. Given boundary values 

f :¶Bn® Sn  of class H
1
2 . Find a critical 

point u of the Energy E in the class of 

mappings in S 
n
, satisfying 𝑢|𝜕𝐵𝑛 = 𝑓.  

 

 

The critical point can be obtained as follows: 

First denote for each 𝑢 ∈ S  
n
, the space of 

vector-fields along u, by 

      nnnn BxxvxuRBHv   ,0,:, 11
S

 

and set  

n

u

n

u H SS  


1

0
,  

where  is the closure (subspace) of H
1
. 

 

Critical point of 𝐸 can be obtained by setting 

the first variation of 𝐸 to zero. Following 

that, the stability of this critical point can be 

determined by considering the second 

variation of 𝐸. 

First and second variation of 

E v( ) =
1

2
Ñv

2

Bn
ò dx  can be calculated as 

follows: 

For t small, define 
nt

t SBu :  by setting: 

ut x( ) =
u+ tv

1+ t2v2( )
1

2

 

Thus, 

  2
1

221 vt

vtu
ut




 – 

 

  2
3

22

22

12

1

vt

vtvut




  

Note that: 

¶

¶t
Ñut

2
= 2Ñut.

¶

¶t
Ñut

æ

è
ç

ö

ø
÷   

and 























































ttttt u

t
uu

t
u

t
u

t 2

2
2

2

2

..2

 

 

Evaluating at t = 0 gives 

¶

¶t
Ñut

2

t=0

= 2Ñu.Ñv  

and  
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  

 2222

22

0

2

2

2

...2

....2

vuuvuv

vuvuuvvu
t

t

t










 

Since   vvvvv  ..2.
2

,  and u.v = 0, 

then 0...2...
2

 vvuuvuu  and 

therefore  222

0

2

2

2

.2 vuvu
t

t

t 






 

 

Thus, the first variation of 

E v( ) =
1

2
Ñv

2

Bn
ò dx  is

    













nB t

tt

t

u dxu
t

uE
t

vE
0

2

0 2

1
  

                                 
nB

dxvu,             (2.3) 

 

and the second variation is 

    













nB t

t

t

tu dxu
t

uE
t

vE

0

2

2

2

0

2

2
2

2

1
                         

   
nB

dxvuv
222

.              (2.4) 

 

By setting the first variation to be equal to 

zero, then u can be a harmonic map of E if it 

satisfies 

                                              

  0,  
nB

u dxvuvE    

and it is stable if   0
2

vEu . 

 

By definition 6, u must satisfy (2.2). We will 

see that (2.3) is a weak form of (2.2). 

 

Suppose a vector w, , 

such that the component vector v can be 

written as component of w orthogonal to u, 

(since     0, xvxu ) as follows 

 wprojwv u ,  

where   u
u

wu
wproju 2

,
 ,  

1
2
u  since   nSxu  , where Sn

 is a unit 

sphere. 

then uwuwv , . 

 

Substituting this into  vEu  yields 

 

 

 

  

  

    























nn

n

n

n

n

n

BB

B

B

B

B

B

u

dxwuuudxwuuwu

dxuwuuuwuuwu

dxuwuuwuuwu

dxuwuwu

dxuwuwu

dxvuvE

,,,

,,,,,

,,,,

,,

,,

,

2



 

Since w is zero on the boundary and 

0.
22
 uuuuuu then  

 

   

  

 

0

,

,0

,,,

2















n

n

n

n

n

B

B

B
B

B

dxuuuwu

dxuuuuwu

dxuuwuwuuudxwuuu

 

so, 

  0,,,
2

 
nn BB

dxwuuwudxvu     

(2.5) 

 

This is weak solution of 0.
2

 uuu , 

which can be shown as follows.
  

Suppose a vector w,   11

2 ,  nn RBHw


 

 
nn BB

dxwuuwdxu ,.
2

 

 

It is clear that 

 

















n

n

n

n

nn

B

B

B

B

BB

wdxu

wdxu

wdxuwu

wdxuwdxu

.

.0

..

..

 

 



Montolalu: Energy Functional ………   39 

 

Hence, it can be shown that 

 
nn BB

dxwuudxwu ,,
2

 

or 

  0,,
2


nB

dxwuuwu  

 

is the weak solution of uuu .
2

  (2.6) 

 

Therefore u is a harmonic map if it satisfies 

the weak solution of 

−∆𝑢 = |∇𝑢|2. 𝑢 

Consider the map 

𝑢∗: 𝐵𝑛 → 𝑆𝑛, 𝑥 → (
𝑥

|𝑥|
, 0) 

where 𝑢∗ belongs to S  
n
 for 𝑛 ≥ 3 and is a 

weak solution of −∆𝑢 = |∇𝑢|2. 𝑢, then 𝑢∗ is 

called the equator map. The well-known 

remark of Heinz [2], pointing out that a size 

restriction is necessary in order to bound the 

derivates of the solutions to certain elliptic 

systems, is using solutions of equation (2.6).   

 

 

Rotationally Symmetric Harmonic Maps 

 

We are going to study rotationally 

symmetric maps with finite energy. 

 

Recall that every map 𝑢: 𝐵𝑛 → 𝑆𝑛 can be 

written in the form 

𝑢(𝑥) = (𝑔(𝑥). sin 𝜑(𝑥), cos 𝜑(𝑥))       (3.1) 

with maps 

𝜑: 𝐵𝑛 → [0, 𝜋],   𝑔: 𝐵𝑛 → 𝑆𝑛−1 ⊂ 𝑅𝑛 

𝜑 measures the Riemannian distance from 

𝑢(𝑥) to the northpole on the sphere and is 

called radius function of 𝑢. A map 𝑢: 𝐵𝑛 →
𝑆𝑛 is rotationally symmetric if and only if  

 𝑔(𝑥) =
𝑥

|𝑥|
 and 𝜑(𝑥) = 𝛷(|𝑥|)           (3.2) 

 

In this case, metric form of the manifold can 

be written as: 
|𝑢|2 = |𝜑|2 + 𝑓2(𝜑). |𝑔|2 

Since the projection assumed is projection 

from unit ball to unit sphere, then this can be 

assumed as a function in geodesic coordinate 

of a sphere, i.e. 𝑓(𝜑) = sin 𝜑. 

Therefore, for  

𝑢(𝑥) = (
𝑥

𝑟
sin 𝛷(𝑟), cos 𝛷(𝑟)),  

with radius function 𝛷: [0,1] → [0, 𝜋] 
depending only on 𝑟 = |𝑥|, the metric form 

can be written as 

|𝑢|2 = |𝛷(𝑟)|2 + 𝑠𝑖𝑛2(𝛷(𝑟)). |
𝑥

𝑟
|

2

 

and 

|∇𝑢|2 = |∇𝛷(𝑟)|2 + 𝑠𝑖𝑛2(𝛷(𝑟)). |∇ (
𝑥

𝑟
)|

2

 

 

It is clear that 

|∇𝛷(𝑟)|2 = ∑ |𝛷′(𝑟)
𝜕𝑟

𝜕𝑥𝛼|
2

𝑛
𝛼=1   

                 =  (𝛷′(𝑟))
2

∑ |
𝜕|𝑥|

𝜕𝑥𝛼 |

2𝑛

𝛼=1

   

                  = (𝛷′(𝑟))
2

∑ |
𝑥𝛼

|𝑥|
|

2𝑛

𝛼=1

 

                  = 𝛷′2(𝑟) 

 
𝜕

𝜕𝑥𝛼 (
𝑥

𝑟
) =

𝜕𝑥𝑖

𝜕𝑥𝛼 .
1

𝑟
+ 𝑥

𝜕𝑖

𝜕𝑥𝛼 (
1

𝑟
) 

                    =
𝑟2 𝜕𝑥𝑖

𝜕𝑥𝛼 − 𝑥. 𝑥𝑖

𝑟3  

Then 

|∇ (
𝑥

𝑟
)|

2

= ∑ |
𝜕

𝜕𝑥𝛼 (
𝑥

𝑟
)|

2

1≤𝛼,𝑖≤𝑛

 

                 = ∑ |
𝑟2 𝜕𝑥𝑖

𝜕𝑥𝛼 − 𝑥. 𝑥𝑖

𝑟3 |

2

1≤𝛼,𝑖≤𝑛

 

                  

                 = [
𝑟4(∑ 1𝑛

𝑖=1 ) − 2𝑟2 . 𝑟2 + 𝑟4

𝑟6 ] 

                 = [
𝑛𝑟4 − 𝑟4

𝑟6 ] 

                 =
𝑛 − 1

𝑟2  

and therefore 

|∇𝑢|2 = 𝛷′2(𝑟) +
𝑛 − 1

𝑟2 𝑠𝑖𝑛2𝛷(𝑟) 

 

Thus 

𝐸(𝑢) =
1

2
∫ [𝛷′2(𝑟) +

𝑛 − 1

𝑟2 𝑠𝑖𝑛2𝛷(𝑟)] 𝑑𝑥

𝐵𝑛

 

and since the Volume of (n – 1)-dimensional 

unit sphere 

𝑉𝑆
𝑛−1𝑟𝑛−1 = 𝑛𝑉𝐵

𝑛𝑟𝑛−1, 

then suppose 𝜔𝑛 denotes the volume of n-

dimensional unit ball. 
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𝐸(𝑢)

=
1

2
∫ ∫ [𝛷′2(𝑟)

𝜋

0

1

0

+
𝑛 − 1

𝑟2 𝑠𝑖𝑛2𝛷(𝑟)] 𝑑𝜃𝑟𝑛−1𝑑𝑟 

 

𝐸(𝑢) =
𝜔𝑛

2
∫ [𝛷′2 +

1

0

              
𝑛−1

𝑟2 𝑠𝑖𝑛2𝛷(𝑟)] 𝑟𝑛−1𝑑𝑟                   

(3.3) 

The first variation now becomes 

𝛿𝑢𝐸(𝑣) = ∫ ∇𝛷. ∇𝑣
𝐵𝑛

+ sin 𝛷 . cos 𝛷 . 𝑣. |∇ (
𝑥

𝑟
)|

2

+ 𝑠𝑖𝑛2𝛷. ∇ (
𝑥

𝑟
) . ∇𝜉 𝑑𝑥 

For v ∈ δ𝑢S
  

0
𝑛

, where 𝑣 = |v| and 𝜉 =
v

|v|
. 

Since Δ (
𝑥

𝑟
) = 0, then 

∫ ∇ (
𝑥

𝑟
) . ∇𝜉

𝐵𝑛
𝑑𝑥 = ∫ −Δ (

𝑥

𝑟
) . ∇𝜉

𝐵𝑛
𝑑𝑥 = 0 

 

And since 𝛿𝑢𝐸(𝑣) = 0 , thus 

∫ ∇𝛷. ∇𝑣
𝐵𝑛

𝑑𝑥

= − ∫ sin 𝛷 . cos 𝛷 . 𝑣. |∇ (
𝑥

𝑟
)|

2

𝐵𝑛
𝑑𝑥 

                               

= − ∫
𝑛 − 1

𝑟2 sin 𝛷 . cos 𝛷 . 𝑣.
𝐵𝑛

𝑑𝑥 

And since  ∫ ∇𝛷. ∇𝑣
𝐵𝑛 𝑑𝑥 = − ∫ Δ𝛷. 𝑣

𝐵𝑛 𝑑𝑥, 

then 

∫ Δ𝛷. 𝑣
𝐵𝑛

𝑑𝑥

= ∫
𝑛 − 1

𝑟2 sin 𝛷 . cos 𝛷 . 𝑣.
𝐵𝑛

𝑑𝑥 

 

Thus, 

Δ𝛷 =
𝑛 − 1

𝑟2 sin 𝛷 . cos 𝛷 =
𝑛 − 1

2𝑟2 sin 2𝛷 

  

In n dimensions the spherical satisfies the 

partial differential equation 

Δ𝛷(𝑟) =
1

𝑟𝑛−1

𝜕

𝜕𝑟
𝑟𝑛−1

𝜕

𝜕𝑟
𝛷(𝑟) 

This can be expressed as : 
1

𝑟𝑛−1

𝜕

𝜕𝑟
𝑟𝑛−1 𝜕

𝜕𝑟
𝛷(𝑟) =

𝜕2

𝜕𝑟2 𝛷(𝑟) +
𝑛−1

𝑟

𝜕

𝜕𝑟
𝛷(𝑟). 

Thus 

𝜕2

𝜕𝑟2 𝛷(𝑟) +
𝑛 − 1

𝑟

𝜕

𝜕𝑟
𝛷(𝑟) −

𝑛 − 1

2𝑟2 sin 2𝛷

= 0 
or 

𝛷′′(𝑟) +
𝑛−1

𝑟
𝛷′(𝑟) −

𝑛−1

2𝑟2 sin 2𝛷 = 0        

(3.4) 

 

Suppose 𝛹(𝑡) = 𝛷(𝑒𝑡), 𝛹: (−∞, 0] →
[0, 𝜋]  
𝛹′(𝑡) = 𝑒𝑡𝛷′(𝑒𝑡) 

𝛹′′(𝑡) = 𝑒𝑡𝛷′(𝑒𝑡) + 𝑒2𝑡𝛷′′(𝑒𝑡) 
Then 

𝛷′′(𝑒𝑡) +
𝑛 − 1

𝑒𝑡 𝛷′(𝑒𝑡) −
𝑛 − 1

2𝑒2𝑡 sin 2𝛷(𝑒𝑡)

= 0 

𝑒2𝑡𝛷′′(𝑒𝑡) + (𝑛 − 1)𝑒𝑡𝛷′(𝑒𝑡)

−
𝑛 − 1

2
sin 2𝛷(𝑒𝑡) = 0 

[𝑒2𝑡𝛷′′(𝑒𝑡) + 𝑒𝑡𝛷′(𝑒𝑡)]
+ (𝑛 − 2)[𝑒𝑡𝛷′(𝑒𝑡)]

−
𝑛 − 1

2
sin 2𝛷(𝑒𝑡) = 0 

Therefore, 

𝛹′′(𝑡) + (𝑛 − 2)𝛹′(𝑡) −
𝑛−1

2
sin 2𝛹(𝑡) =

0                                                                     (3.5) 

 

The energy can be expressed in term of 

𝛹(𝑡): 

𝐸(𝑢)

=
𝜔𝑛

2
∫ [𝛷′2(𝑒𝑡)

0

−∞

+
𝑛 − 1

𝑒2𝑡 𝑠𝑖𝑛2𝛷(𝑒𝑡)] 𝑒(𝑛−1)𝑡𝑒𝑡𝑑𝑡 

           

=
𝜔𝑛

2
∫[𝑒2𝑡𝛷′2(𝑒𝑡)

0

−∞

+ (𝑛 − 1)𝑠𝑖𝑛2𝛷(𝑒𝑡)]𝑒−2𝑡𝑒(𝑛−1)𝑡𝑒𝑡𝑑𝑡 

           =
𝜔𝑛

2
∫ [𝛹′2(𝑡) + (𝑛 −

0

−∞

                1)𝑠𝑖𝑛2𝛹(𝑡)] 𝑒(𝑛−2)𝑡𝑑𝑡              (3.6) 
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