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ABSTRAK

Roti merupakan makanan pokok yang sangat rentan terhadap kontaminasi jamur, khususnya
oleh Rhizopus stolonifer, yang dapat menimbulkan risiko serius terhadap kesehatan dan
keamanan pangan. Deteksi dini dan akurat terhadap pertumbuhan jamur sangat penting
untuk mencegah kerusakan serta menjaga keamanan konsumen. Penelitian ini menyajikan
analisis komparatif terhadap beberapa varian terbaru YOLO (You Only Look Once), yaitu
YOLOvV8n, YOLOv10n, YOLOI11n, dan YOLOvV12n, dalam mendeteksi jamur Rhizopus
stolonifer pada permukaan roti. Penelitian ini menggunakan dataset deteksi jamur yang
bersumber dari platform Roboflow, yang berisi gambar roti beranotasi yang diambil dalam
berbagai kondisi pencahayaan, tekstur, dan kontaminasi untuk mendukung pelatihan model
yang optimal. Setiap varian YOLO dilatih dan dievaluasi dengan hiperparameter yang
konsisten guna memastikan keadilan dalam perbandingan. Hasil eksperimen menunjukkan
bahwa YOLOv8n memperoleh nilai mAP50 sebesar 0,472 dan mAP50:95 sebesar 0,203;
YOLOvVI10n sebesar 0,474 dan 0,191; YOLO11n sebesar 0,504 dan 0,204; serta YOLOv12n
sebesar 0,503 dan 0,224. Di antara varian tersebut, YOLO11n menunjukkan performa
mAPS50 tertinggi, sedangkan YOLOv12n mencapai nilai mAP50:95 terbaik, yang
menandakan konsistensi deteksi yang lebih baik pada berbagai ambang IoU. Temuan ini
menunjukkan bahwa arsitektur YOLO terbaru memiliki potensi yang menjanjikan untuk
deteksi jamur Rhizopus stolonifer pada roti secara otomatis dan waktu nyata, sehingga dapat
mendukung pengembangan sistem pemantauan keamanan pangan yang cerdas.

Kata kunci: Deep learning; deteksi roti jamur; Rhizopus stolonifer; keselamatan pangan;
pendeteksian objek YOLO

Mold on Food Product:
Comparative Analysis of YOLO Variants for Detecting Rhizopus
stolonifer on Bread

ABSTRACT

Bread is a staple food that is highly susceptible to fungal contamination, particularly by
Rhizopus stolonifer, which poses significant health and food safety risks. Early and accurate
detection of mold growth is essential to prevent spoilage and ensure consumer safety. This
study presents a comparative analysis of recent YOLO (You Only Look Once) variants,
YOLOvV8n, YOLOvV10n, YOLO11n, and YOLOvV12n for detecting Rhizopus stolonifer mold
on bread surfaces. This study utilized a mold detection dataset sourced from the Roboflow
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platform, which contains annotated bread images captured under diverse lighting, texture,
and contamination conditions to support robust model training. Each YOLO variant was
trained and evaluated under consistent hyperparameters to ensure fairness in comparison.
Experimental results indicate that YOLOv8n achieved an mAP50 of 0.472 and mAP50:95
of 0.203; YOLOvV10n achieved 0.474 and 0.191, respectively; YOLO11n achieved 0.504
and 0.204; and YOLOvI12n achieved 0.503 and 0.224. Among these, YOLOIIn
demonstrated the highest mAP50 performance, while YOLOvI12n attained the best
mAP50:95 score, indicating superior detection consistency across varying IoU thresholds.
These findings suggest that recent YOLO architectures offer promising potential for real-
time and automated detection of Rhizopus stolonifer mold in bread, supporting
advancements in intelligent food safety monitoring systems.

Keywords: Bread mold detection; deep learning; food safety monitoring; Rhizopus

stolonifer; YOLO object detection
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INTRODUCTION

Bread is a globally important staple whose physicochemical composition (moderate
water activity, starches, and sugars) and processing make it vulnerable to microbial spoilage,
particularly fungal colonization, which shortens its shelf life and creates economic losses for
producers and retailers (Liu et al., 2022). Bio-preservation and other mitigation strategies
have been widely studied to reduce fungal spoilage while meeting consumer demand for
fewer chemical preservatives (Rahman et al., 2022).

Among fungi that spoil bakery products, Rhizopus species (commonly reported as
Rhizopus stolonifer, also known as “black bread mold”) are frequently observed. They can
rapidly colonize bread surfaces under favorable humidity and temperature conditions. Such
colonization can produce visible mycelia and, in some contexts, mycotoxins or secondary
metabolites that raise concerns about food safety (Rahman ef al., 2022). Recent reviews
synthesize the biology, detection challenges, and control strategies for R. stolonifer in
postharvest and food contexts (Q. Liu ef al., 2024).

Conventional detection and control methods in bakeries, such as visual inspection,
culture-based identification, and laboratory assays, remain important but are often slow,
labor-intensive, and insensitive to very early contamination (Q. Liu ef al., 2024). This has
motivated research into non-destructive, image-based screening and automation methods
that can detect early surface anomalies before they lead to gross spoilage. Natural and
biological control approaches are also being explored as complementary strategies to reduce
fungal incidence (Ribes et al., 2018).

In computer vision, deep convolutional neural networks (CNNs), particularly the
YOLO family of one-stage detectors, have demonstrated real-time detection capabilities
suitable for production-line inspection (Redmon et al., 2015). Recent YOLO variants,
YOLOvS, YOLOvI0, YOLO11, and YOLOV12, incorporate architectural refinements
specifically targeting small-object detection and inference efficiency. However, comparative
evaluations of these modern YOLO variants for detecting early-stage fungal contamination
on bread surfaces remain absent from the literature. While these models show promise for
identifying subtle mold spots, no systematic study has benchmarked their relative
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performance on fungal-contamination datasets, leaving practitioners without empirical
guidance for selecting optimal detection architectures for automated bakery inspection
systems. This gap is critical because different YOLO versions may exhibit distinct trade-offs
between detection accuracy and computational efficiency when applied to the specific visual
characteristics of R. stolonifer colonization.

Recent literature has documented the rapid evolution of YOLO architectures, with
comprehensive reviews tracing developments from YOLOv1 through YOLOvI12 and
benchmarking studies revealing distinctive performance trade-offs across versions (Jegham
et al., 2024). In food quality monitoring, deep learning has shown promising results:
YOLOVS achieved 98.10% precision and 100% recall for mold detection across multiple
food types, including bread (Jubayer et al., 2021). At the same time, thermal imaging
combined with YOLO11n demonstrated an mAP50-95 of 0.607 for bread contamination
detection (Madasamy Raja ef al., 2025), and CNN-based transfer learning enabled early-
stage microscopic mold detection suitable for smartphone deployment (Treepong & Theera-
Ampornpunt, 2023). However, existing studies have focused on earlier YOLO versions
(YOLOvV3-YOLOVS), employed specialized imaging modalities (thermal, microscopic), or
addressed general mold detection without species-specific focus on Rhizopus stolonifer.
Furthermore, no systematic comparison of modern nano YOLO variants (YOLOv8n,
YOLOv10n, YOLOI11n, YOLOvI2n) exists for conventional RGB-based bread mold
detection, leaving a critical gap in understanding their relative performance and suitability
for edge-based bakery inspection systems under practical deployment constraints.

Practical deployment of automated inspection systems in bakery environments
necessitates consideration of computational constraints and infrastructure requirements. The
nano (n) variants of YOLO models are engineered explicitly for resource-constrained
environments, enabling deployment on edge devices such as embedded systems, industrial
cameras, or mobile processors without dependence on cloud computing infrastructure. Edge-
based detection offers critical advantages for bakery production lines: reduced latency for
real-time decision-making, lower operational costs by eliminating cloud service fees,
enhanced data privacy by keeping proprietary production data on-premises, and reliability
in environments with limited or unstable internet connectivity. Despite these practical
benefits, the comparative performance of nano YOLO variants (YOLOv8n, YOLOvV10n,
YOLOI1n, YOLOvI12n) for bread mold detection has not been systematically evaluated,
leaving a knowledge gap regarding which architecture best balances detection accuracy with
edge-deployment feasibility for automated food safety applications.

To fill this gap, the present study conducts a systematic comparative analysis of
YOLOvV8n, YOLOvI10n, YOLOI11n, and YOLOvI2n for detecting Rhizopus stolonifer on
bread images collected and annotated via the Roboflow platform. Each model was trained
with consistent hyperparameters and evaluated using standard detection metrics (mAP50 and
mAP50:95) to determine relative strengths in accuracy and robustness. The goal is to identify
which modern YOLO variant best balances detection accuracy and inference practicality for
real-time, automated bakery inspection systems, and to provide empirical guidance for
applied food-safety deployments. This study makes three key contributions:1) First
systematic benchmark: Provides the first comparative evaluation of modern nano YOLO
variants (YOLOv8n, YOLOv10n, YOLOI11n, YOLOvI12n) specifically for early-stage
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fungal contamination detection on bread surfaces; 2) Edge-deployment feasibility
assessment: Evaluates the accuracy-efficiency trade-offs of lightweight architectures
suitable for resource-constrained bakery inspection systems; 3) Empirical guidance for
practitioners: Offers data-driven recommendations for selecting optimal YOLO
architectures in real-time, automated food safety applications.

RESEARCH METHOD

Research Procedure

This research employed a systematic methodology to ensure a comprehensive
evaluation and implementation of four YOLO model variants, YOLOv8n, YOLOvVI10n,
YOLOI1n, and YOLOvVI12n, for bread mold detection applications. The investigation
commenced with an extensive literature review and architectural analysis of the YOLO
family to establish a robust theoretical foundation regarding one-stage object detection
systems and their evolution toward real-time performance and enhanced accuracy.
Subsequently, a dedicated mold detection dataset was collected and refined using the
Roboflow platform, containing high-resolution images of bread samples with visible and
early-stage fungal growth to represent diverse contamination patterns and lighting
conditions.

The experimental framework involved a rigorous configuration of the hardware and
software environments, optimized for deep learning model training, including GPU
acceleration and efficient memory utilization, which are essential for high-throughput image
processing. Following the infrastructure setup, a unified training pipeline was developed for
all YOLO models, integrating robust data augmentation strategies and hyperparameter
tuning to enhance model generalization and stability during the learning process.

Each YOLO variant was trained under consistent conditions to ensure fairness in
comparison, with specific attention given to convergence behavior, loss patterns, and
inference speed. After the training phase, the models were deployed and tested on unseen
validation data that simulated realistic conditions for bakery inspections. This stage enabled
an accurate performance evaluation using standardized metrics such as mAP50 and
mAP50:95, allowing the assessment of each model’s detection precision and robustness
against visual variability. The methodological framework ensured that the comparative
analysis reflected both practical feasibility and scientific rigor, ultimately identifying the
YOLO model variant most effective for automated bread mold detection in food-quality
control environments.
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Figure 1. YOLOvS8-nano architecture
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Figure 2. YOLOv10-nano architecture

YOLOvVS

YOLOVS was released in 10th of January 2023, by (Explore Ultralytics YOLOVS -
Ultralytics YOLO Docs,n.d.) Based on its predecessor, YOLOv4 (Bochkovskiy et al., 2020),
it incorporates the use of PAN (Path Aggregation Network) architecture (S. Liu et al., 2018)
for its neck architecture to merge as a single-stage detector from its backbone (central
extractor), as shown in Figure 1. The introduction of the C2f (Convolution 2 fast) module is
based on the CSP module (C. Y. Wang et al., 2019), which adds a bottleneck and two fast
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connections (or residuals within the C2f) module (He et al, 2015), improving its
computational efficiency while maintaining the accuracy of its overall model. Furthermore,
the main difference between YOLOVS and its predecessor is the use of anchor-free detection
on its head. Anchor-free means it eliminates the reliance on pre-determined anchor points
for each cell on the prediction image. The loss function that was used on YOLOVS is CloU
(Complete Intersection over Union) Loss (Zheng et al., 2020) for the IoU bounding boxes
loss, DFL (Distributional Focal Loss) (Li et al., 2020) for the distributional bounding boxes
loss within an instance (one’s image predictions), and BCE (Binary Cross Entropy) for its
objectness loss. The CloU loss is expressed as follows:

_1B.nBY .
"~ |B UB9t|’
p(B,BI")
LCIOU = 1 - IOU + C—2+ av, (2)
{0, IoU < 0.5
a= v (3)
, IoU = 0.5’
(1—1IoU) + v 0
4 wit w)?
U= = (arctan Tt arctan ﬁ) (4)
where, B is the bounding boxes that were generated by the predictions of YOLO, B9¢
gt
is the ground truth bounding boxes, @ is the Euclidean distance between the ground

truth bounding boxes and the prediction bounding boxes, v is the aspect ratio of the width
and height for the bounding box of ground truth and prediction, and « is the balancing
parameter to keep v normalize between 0 and 1. The calculation of the total loss of YOLOVS,
so it can do a backward pass to update its weights, is formulated as follows:

Leotar = AcrovLciov + Aprilprr + Apcelsce, (5)
where, A is the balance parameter that automatically updates after every epoch for
each loss.

YOLOv10

YOLOv10 was released on the 23rd of May, 2024 (A. Wang et al., 2024). It
introduces a new attention mechanism called the PSA (Partial Self-Attention) module, which
is inspired by Vision Transformer (Dosovitskiy et al., 2020), as well as C2fCIB, which
combines the C2f module with a new module called CIB (Compact Inverted Bottleneck),
inspired by the Inverted Bottleneck in MobileNetv2 (Sandler ef al., 2018). Furthermore, it
also added a new method to eliminate discrepancies in bounding box predictions without the
use of NMS (Non-Maximum Suppression) (Hosang et al., 2017) or NMS-free predictions.
It utilizes a novel module, known as the One-to-One and One-to-Many prediction method,
to replace the primary function of NMS, which is shown in the head section of Figure 2. The
Loss function in YOLOvV10 is the same as that in YOLOvVS, other than the novel Loss
function for calculating the loss between the One-to-One and One-to-Many (A. Wang et al.,
2024).
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YOLO11

YOLOL11 was released on the 27th of May, 2024. YOLO11, developed by Ultralytics,
is based on YOLOVS, with the novelty of replacing the C2f module within YOLOv8 with a
novel C3k2 module, which further improves its efficiency and increases performance
accuracy. Furthermore, YOLO11 incorporates a novel attention mechanism called C2PSA
(2 Convolution Partial Self-Attention) placed after the SPPF module, similar to that of
YOLOv10, to further improve the extraction capabilities of the primary extractor
(backbone). The Loss function in YOLO11 is the same as that in YOLOVS.

YOLOv12

YOLOV12 was released on the 18th of February, 2025 (Tian et al., 2025). YOLOv12
is based on YOLO11, with the novelty of replacing the existing C3k2 module with a novel
A2C2f (Attention Area C2f) module, which incorporates an attention mechanism. Then, it
was placed in a few locations inside the backbone and neck, replacing C3k2 and completely
removing the attention mechanism of C2PSA, as well as the SPPF module from YOLO11.
The incorporation of A2C2f aims to further enhance the feature map at the end of its primary
extractor (backbone), extending all the way to the neck, thereby improving all missing

features that have been affected by vanishing gradients in deep neural networks. The Loss
function in YOLOV12 is the same as that in YOLOvS

Dataset

The dataset used in this research is publicly available on the Roboflow platform
(gopletzzz, 2025). The train set comprises approximately 764 images, the validation set
contains 87 images, and the test set comprises 23 images, totaling 874 images. The mold
dataset contains only one class, called "bread mold". Furthermore, when trained on
YOLOV8, YOLOvV10, YOLOL11, and YOLOV12, the pre-existing architecture of Ultralytics
on YOLOVS already has a built-in feature that augments data to improve variation for better
training.

Training Configuration
Table 1. Training Configuration

Parameters Configuration
Platform Kaggle
GPU NVIDIA Tesla P100
Image Size 640 x 640
Epochs 300
Batch Size 32
Optimizer Stochastic Gradient Descent
Learning Rate 0.01

The training configuration for this research was conducted on Kaggle's cloud
platform. The configurations are running on the NVIDIA Tesla P100 GPU, with an input
image size of 640 x 640 and a batch size of 32. Running for 300 epochs with an optimizer
of Stochastic Gradient Descent (SGD) with the default learning rate of YOLO 0.01, as shown
in Table 1.
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Evaluation Metrics

In this study, the evaluation metrics used include F1 score, precision (P), recall (R),
mean average precision (mAP). Additionally, the number of parameters (Parameters) was
also considered. The formulas for these metrics are as follows:

1 k=n
mAP =~ " APy, (6)
k=1

where n is the number of classes, in this research, there is only one, and APy is the
mean of k classes, so mAP is the overall mean of the average of all classes’ score on the
dataset.

Precision = TP %
recision = TP n FP,

Recall = — 8)
At = TP Y FN’

_ 2 X Precision X Recall

9
Precision + Recall )
where TP is True Positive, in this research, it means the model prediction bounding

box is inside the ground truth, FP is False Positives, which means the model prediction's
bounding box is within the image but not inside accurately enough, and FN is False
Negatives, which means the model accurately predicts that there are no objects to be
predicted.

RESULTS AND DISCUSSION

This section presents the experimental results and analysis of four YOLO variants,
YOLOvV8n, YOLOvIOn, YOLOI1n, and YOLOvI12n, applied for detecting Rhizopus
stolonifer mold on bread. The discussion encompasses model performance evaluation,
comparative analysis across the four architectures, assessment of the custom mold detection
dataset, and analysis of each model’s inference speed. These components collectively aim
to validate the effectiveness, accuracy, and practical applicability of the proposed detection
framework in real-world food inspection and safety monitoring contexts.

Model Comparison

The establishment of performance benchmarks and computational efficiency metrics
through systematic comparison among multiple YOLO architectures represents a
fundamental step in validating the scientific contribution and practical feasibility of deep
learning-based mold detection on bread. This comparative analysis serves several critical
objectives in assessing model performance, including demonstrating algorithmic
advancements across YOLO generations, quantifying improvements in computational
efficiency for potential real-time deployment, and providing empirical evidence of the trade-
off between detection accuracy and processing speed for each model. Such a comprehensive
evaluation is essential in the evolving field of computer vision applications for food safety,
where the adoption of efficient and reliable object detection systems can significantly
enhance automated quality control and contamination prevention efforts.

To ensure the integrity and reproducibility of the comparative process, this research
employed a standardized benchmarking protocol using a custom bread mold dataset curated
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via the Roboflow platform. The dataset features high-resolution images of bread under
various environmental conditions, differing in lighting, background texture, and degrees of
mold growth, to capture realistic scenarios encountered in bakery inspection environments.
The benchmarking framework maintained consistent preprocessing routines, uniform
training parameters, identical evaluation metrics, and equivalent hardware configurations
across all YOLO models. This standardization ensured that observed performance
differences could be attributed solely to architectural innovations rather than inconsistencies
in experimental setup.

The comparative methodology focused on two primary evaluation aspects relevant to
practical food safety applications: detection performance and computational efficiency.
Detection performance was assessed using standard computer vision metrics, including
mean Average Precision (mAP) at IoU thresholds of 0.50 (mAP50) and 0.50:0.95
(mAP50:95), as well as precision-recall analysis and Fl-score evaluation to balance
detection sensitivity and specificity. These metrics collectively provided a comprehensive
understanding of each YOLO model’s capacity to accurately localize and identify Rhizopus
stolonifer mold across diverse visual conditions. Meanwhile, computational efficiency was
evaluated in terms of model size, inference time, and hardware utilization, factors critical for
real-time implementation within automated bakery monitoring systems or embedded
inspection devices.

Table 2. Model Comparison with Mold on Bread Dataset

Test mAP (%)

o

Model Parameters GFLOPs mAP50 mAP50:95 F1 (%)
YOLOv8n 3,011,043 8.2 47.2 20.3 38.0
YOLOv10n 2,707,430 8.4 47.4 19.1 34.0
YOLOI1n 2,590,019 6.4 50.4 20.4 39.0

YOLOv12n 2,568,227 6.5 50.3 22.4 39.0
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Figure 3. The results that have been generated by YOLOvV8n (a), YOLOv10n (b),
YOLOL11n (c), and YOLOV12n (d), at the end of training of each model.

Table 2 and Figure 3 present the comparative analysis results for the four YOLO
variants: YOLOv8n, YOLOv10n, YOLOI1 In, and YOLOV12n, highlighting their respective
accuracy and computational performance characteristics. The results indicate that YOLO11n
achieved the highest mAP50 score of 0.504, while YOLOvI2n achieved the highest
mAP50:95 of 0.224, signifying superior detection consistency across varying intersection-
over-union thresholds. YOLOvV8n and YOLOv10n demonstrated competitive yet slightly
lower performance metrics, indicating that architectural enhancements in later YOLO
versions contributed to improved model generalization and detection precision.

A comparative analysis was also performed on the Precision and Recall of each
YOLO variant used in this research. Precision refers to the model's accuracy in predicting,
which is the percentage of all true positives among all positive predictions. Recall measures
how well the model identifies all the correct instances in an image. The Precision and Recall
can be expressed mathematically as follows:
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Figure 4. Normalized confusion matrix for models of YOLOvS8n (a), YOLOv10n (b),
YOLOI1n (¢), and YOLOv12n (d).

Figure 4 highlights the precision and recall of each YOLO variant, where, although
YOLOV12n in Figure 4(d) achieves high accuracy in terms of mAP50:95, the percentage of
True positives for detecting bread mold is the same as in YOLOv8n, as shown in Figure 4(a).
Furthermore, YOLO11n achieves the highest True Positives percentage of 35%, as shown
in Figure 4(c).

Beyond numerical comparison, the analysis underscores the practical implications of
model selection for industrial deployment. Although minor differences exist in detection
accuracy, YOLOI11n and YOLOv12n provide an advantageous balance between detection
precision and computational demand, making them suitable for real-time inspection
scenarios. Their compact model structures and high inference speeds allow deployment on
low-power or edge devices typically found in bakery production lines, supporting continuous
contamination monitoring without the need for high-end hardware infrastructure. These
characteristics enhance operational scalability, reduce inspection latency, and promote the
adoption of intelligent food safety technologies across various production settings.

In summary, the comparative evaluation demonstrates that recent YOLO
architectures deliver notable advancements in both accuracy and computational efficiency
for mold detection tasks. The results confirm the robustness and adaptability of the YOLO
framework in ensuring food quality and consumer safety through automated visual
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inspection, laying the groundwork for future integration into innovative food monitoring
systems.

Qualitative Results Comparison

YOLOv12n YOLO11n YOLOv1On YOLOv8n

Figure 5. Qualitative results of each YOLO variant trained on the Mold on Bread dataset

This section compares the qualitative results between YOLOv8n, YOLOvI10n,
YOLOI1n, and YOLOvI2n. The findings show that YOLOI11n provides better accuracy
detection compared with the other YOLO variants in several cases, as shown in Figure 5. In
the first column of the figure, YOLOv8n, YOLO11n, and YOLOvVI12n successfully detect
all the molds on bread; however, YOLOv8n and YOLOV12n create double bounding boxes,
consequently detecting more than they should. In the second column of the figure, only
YOLO11n successfully detects two molds on bread compared with the other YOLO variants,
while also interestingly, even though YOLOvI12n achieves the highest mAP50:95,
YOLOv12n manages to misdetect the background as the mold. In contrast, YOLO11n is
more precise and generates a correct prediction (generating only one bounding box), as
shown in Figure 5.
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CONCLUSION

The comparative analysis of YOLOv8n, YOLOv10n, YOLOI1 1n, and YOLOvV12n for
detecting Rhizopus stolonifer mold on bread demonstrated that YOLO1 1n achieved the best
overall performance, with the highest mAP50 of 0.504 and consistent qualitative accuracy
across various test cases. While YOLOvI12n attained the highest mAP50:95 of 0.224,
qualitative observations revealed that it occasionally produced redundant bounding boxes or
false detections, whereas YOLO11n consistently generated precise and stable predictions.
These results confirm YOLOI1In’s superior balance between detection accuracy and
computational efficiency, making it most suitable for real-time bread mold detection in food
inspection systems. This study demonstrates that modern nano YOLO architectures can
effectively automate early-stage detection of fungal contamination, offering a practical
alternative to labor-intensive visual inspection and culture-based methods in bakery quality
control. Future work should focus on expanding the dataset to include more diverse bread
types and contamination conditions, integrating multispectral imaging for early-stage mold
detection, and testing real-time deployment on embedded edge devices to enhance practical
implementation in automated food safety monitoring environments.
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