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ABSTRAK 

Roti merupakan makanan pokok yang sangat rentan terhadap kontaminasi jamur, khususnya 

oleh Rhizopus stolonifer, yang dapat menimbulkan risiko serius terhadap kesehatan dan 

keamanan pangan. Deteksi dini dan akurat terhadap pertumbuhan jamur sangat penting 

untuk mencegah kerusakan serta menjaga keamanan konsumen. Penelitian ini menyajikan 

analisis komparatif terhadap beberapa varian terbaru YOLO (You Only Look Once), yaitu 

YOLOv8n, YOLOv10n, YOLO11n, dan YOLOv12n, dalam mendeteksi jamur Rhizopus 

stolonifer pada permukaan roti. Penelitian ini menggunakan dataset deteksi jamur yang 

bersumber dari platform Roboflow, yang berisi gambar roti beranotasi yang diambil dalam 

berbagai kondisi pencahayaan, tekstur, dan kontaminasi untuk mendukung pelatihan model 

yang optimal. Setiap varian YOLO dilatih dan dievaluasi dengan hiperparameter yang 

konsisten guna memastikan keadilan dalam perbandingan. Hasil eksperimen menunjukkan 

bahwa YOLOv8n memperoleh nilai mAP50 sebesar 0,472 dan mAP50:95 sebesar 0,203; 

YOLOv10n sebesar 0,474 dan 0,191; YOLO11n sebesar 0,504 dan 0,204; serta YOLOv12n 

sebesar 0,503 dan 0,224. Di antara varian tersebut, YOLO11n menunjukkan performa 

mAP50 tertinggi, sedangkan YOLOv12n mencapai nilai mAP50:95 terbaik, yang 

menandakan konsistensi deteksi yang lebih baik pada berbagai ambang IoU. Temuan ini 

menunjukkan bahwa arsitektur YOLO terbaru memiliki potensi yang menjanjikan untuk 

deteksi jamur Rhizopus stolonifer pada roti secara otomatis dan waktu nyata, sehingga dapat 

mendukung pengembangan sistem pemantauan keamanan pangan yang cerdas. 

Kata kunci: Deep learning; deteksi roti jamur; Rhizopus stolonifer; keselamatan pangan; 

pendeteksian objek YOLO 

Mold on Food Product: 

Comparative Analysis of YOLO Variants for Detecting Rhizopus 

stolonifer on Bread 
 

ABSTRACT  

Bread is a staple food that is highly susceptible to fungal contamination, particularly by 

Rhizopus stolonifer, which poses significant health and food safety risks. Early and accurate 

detection of mold growth is essential to prevent spoilage and ensure consumer safety. This 

study presents a comparative analysis of recent YOLO (You Only Look Once) variants, 

YOLOv8n, YOLOv10n, YOLO11n, and YOLOv12n for detecting Rhizopus stolonifer mold 

on bread surfaces. This study utilized a mold detection dataset sourced from the Roboflow 
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platform, which contains annotated bread images captured under diverse lighting, texture, 

and contamination conditions to support robust model training. Each YOLO variant was 

trained and evaluated under consistent hyperparameters to ensure fairness in comparison. 

Experimental results indicate that YOLOv8n achieved an mAP50 of 0.472 and mAP50:95 

of 0.203; YOLOv10n achieved 0.474 and 0.191, respectively; YOLO11n achieved 0.504 

and 0.204; and YOLOv12n achieved 0.503 and 0.224. Among these, YOLO11n 

demonstrated the highest mAP50 performance, while YOLOv12n attained the best 

mAP50:95 score, indicating superior detection consistency across varying IoU thresholds. 

These findings suggest that recent YOLO architectures offer promising potential for real-

time and automated detection of Rhizopus stolonifer mold in bread, supporting 

advancements in intelligent food safety monitoring systems. 

Keywords: Bread mold detection; deep learning; food safety monitoring; Rhizopus 

stolonifer; YOLO object detection 
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INTRODUCTION 

Bread is a globally important staple whose physicochemical composition (moderate 

water activity, starches, and sugars) and processing make it vulnerable to microbial spoilage, 

particularly fungal colonization, which shortens its shelf life and creates economic losses for 

producers and retailers (Liu et al., 2022). Bio-preservation and other mitigation strategies 

have been widely studied to reduce fungal spoilage while meeting consumer demand for 

fewer chemical preservatives (Rahman et al., 2022). 

Among fungi that spoil bakery products, Rhizopus species (commonly reported as 

Rhizopus stolonifer, also known as “black bread mold”) are frequently observed. They can 

rapidly colonize bread surfaces under favorable humidity and temperature conditions. Such 

colonization can produce visible mycelia and, in some contexts, mycotoxins or secondary 

metabolites that raise concerns about food safety (Rahman et al., 2022). Recent reviews 

synthesize the biology, detection challenges, and control strategies for R. stolonifer in 

postharvest and food contexts (Q. Liu et al., 2024). 

Conventional detection and control methods in bakeries, such as visual inspection, 

culture-based identification, and laboratory assays, remain important but are often slow, 

labor-intensive, and insensitive to very early contamination (Q. Liu et al., 2024). This has 

motivated research into non-destructive, image-based screening and automation methods 

that can detect early surface anomalies before they lead to gross spoilage. Natural and 

biological control approaches are also being explored as complementary strategies to reduce 

fungal incidence (Ribes et al., 2018). 

In computer vision, deep convolutional neural networks (CNNs), particularly the 

YOLO family of one-stage detectors, have demonstrated real-time detection capabilities 

suitable for production-line inspection (Redmon et al., 2015). Recent YOLO variants, 

YOLOv8, YOLOv10, YOLO11, and YOLOv12, incorporate architectural refinements 

specifically targeting small-object detection and inference efficiency. However, comparative 

evaluations of these modern YOLO variants for detecting early-stage fungal contamination 

on bread surfaces remain absent from the literature. While these models show promise for 

identifying subtle mold spots, no systematic study has benchmarked their relative 
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performance on fungal-contamination datasets, leaving practitioners without empirical 

guidance for selecting optimal detection architectures for automated bakery inspection 

systems. This gap is critical because different YOLO versions may exhibit distinct trade-offs 

between detection accuracy and computational efficiency when applied to the specific visual 

characteristics of R. stolonifer colonization. 

Recent literature has documented the rapid evolution of YOLO architectures, with 

comprehensive reviews tracing developments from YOLOv1 through YOLOv12 and 

benchmarking studies revealing distinctive performance trade-offs across versions (Jegham 

et al., 2024). In food quality monitoring, deep learning has shown promising results: 

YOLOv5 achieved 98.10% precision and 100% recall for mold detection across multiple 

food types, including bread (Jubayer et al., 2021). At the same time, thermal imaging 

combined with YOLO11n demonstrated an mAP50-95 of 0.607 for bread contamination 

detection (Madasamy Raja et al., 2025), and CNN-based transfer learning enabled early-

stage microscopic mold detection suitable for smartphone deployment (Treepong & Theera-

Ampornpunt, 2023). However, existing studies have focused on earlier YOLO versions 

(YOLOv3-YOLOv5), employed specialized imaging modalities (thermal, microscopic), or 

addressed general mold detection without species-specific focus on Rhizopus stolonifer. 

Furthermore, no systematic comparison of modern nano YOLO variants (YOLOv8n, 

YOLOv10n, YOLO11n, YOLOv12n) exists for conventional RGB-based bread mold 

detection, leaving a critical gap in understanding their relative performance and suitability 

for edge-based bakery inspection systems under practical deployment constraints. 

Practical deployment of automated inspection systems in bakery environments 

necessitates consideration of computational constraints and infrastructure requirements. The 

nano (n) variants of YOLO models are engineered explicitly for resource-constrained 

environments, enabling deployment on edge devices such as embedded systems, industrial 

cameras, or mobile processors without dependence on cloud computing infrastructure. Edge-

based detection offers critical advantages for bakery production lines: reduced latency for 

real-time decision-making, lower operational costs by eliminating cloud service fees, 

enhanced data privacy by keeping proprietary production data on-premises, and reliability 

in environments with limited or unstable internet connectivity. Despite these practical 

benefits, the comparative performance of nano YOLO variants (YOLOv8n, YOLOv10n, 

YOLO11n, YOLOv12n) for bread mold detection has not been systematically evaluated, 

leaving a knowledge gap regarding which architecture best balances detection accuracy with 

edge-deployment feasibility for automated food safety applications. 

To fill this gap, the present study conducts a systematic comparative analysis of 

YOLOv8n, YOLOv10n, YOLO11n, and YOLOv12n for detecting Rhizopus stolonifer on 

bread images collected and annotated via the Roboflow platform. Each model was trained 

with consistent hyperparameters and evaluated using standard detection metrics (mAP50 and 

mAP50:95) to determine relative strengths in accuracy and robustness. The goal is to identify 

which modern YOLO variant best balances detection accuracy and inference practicality for 

real-time, automated bakery inspection systems, and to provide empirical guidance for 

applied food-safety deployments. This study makes three key contributions:1) First 

systematic benchmark: Provides the first comparative evaluation of modern nano YOLO 

variants (YOLOv8n, YOLOv10n, YOLO11n, YOLOv12n) specifically for early-stage 
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fungal contamination detection on bread surfaces; 2) Edge-deployment feasibility 

assessment: Evaluates the accuracy-efficiency trade-offs of lightweight architectures 

suitable for resource-constrained bakery inspection systems; 3) Empirical guidance for 

practitioners: Offers data-driven recommendations for selecting optimal YOLO 

architectures in real-time, automated food safety applications. 

 

RESEARCH METHOD 

Research Procedure 

This research employed a systematic methodology to ensure a comprehensive 

evaluation and implementation of four YOLO model variants, YOLOv8n, YOLOv10n, 

YOLO11n, and YOLOv12n, for bread mold detection applications. The investigation 

commenced with an extensive literature review and architectural analysis of the YOLO 

family to establish a robust theoretical foundation regarding one-stage object detection 

systems and their evolution toward real-time performance and enhanced accuracy. 

Subsequently, a dedicated mold detection dataset was collected and refined using the 

Roboflow platform, containing high-resolution images of bread samples with visible and 

early-stage fungal growth to represent diverse contamination patterns and lighting 

conditions. 

The experimental framework involved a rigorous configuration of the hardware and 

software environments, optimized for deep learning model training, including GPU 

acceleration and efficient memory utilization, which are essential for high-throughput image 

processing. Following the infrastructure setup, a unified training pipeline was developed for 

all YOLO models, integrating robust data augmentation strategies and hyperparameter 

tuning to enhance model generalization and stability during the learning process. 

Each YOLO variant was trained under consistent conditions to ensure fairness in 

comparison, with specific attention given to convergence behavior, loss patterns, and 

inference speed. After the training phase, the models were deployed and tested on unseen 

validation data that simulated realistic conditions for bakery inspections. This stage enabled 

an accurate performance evaluation using standardized metrics such as mAP50 and 

mAP50:95, allowing the assessment of each model’s detection precision and robustness 

against visual variability. The methodological framework ensured that the comparative 

analysis reflected both practical feasibility and scientific rigor, ultimately identifying the 

YOLO model variant most effective for automated bread mold detection in food-quality 

control environments. 
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Figure 1. YOLOv8-nano architecture 

 
Figure 2. YOLOv10-nano architecture 

YOLOv8 

YOLOv8 was released in 10th of January 2023, by (Explore Ultralytics YOLOv8 - 

Ultralytics YOLO Docs, n.d.) Based on its predecessor, YOLOv4 (Bochkovskiy et al., 2020), 

it incorporates the use of PAN (Path Aggregation Network) architecture (S. Liu et al., 2018) 

for its neck architecture to merge as a single-stage detector from its backbone (central 

extractor), as shown in Figure 1. The introduction of the C2f (Convolution 2 fast) module is 

based on the CSP module (C. Y. Wang et al., 2019), which adds a bottleneck  and two fast 
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connections (or residuals within the C2f) module (He et al., 2015), improving its 

computational efficiency while maintaining the accuracy of its overall model. Furthermore, 

the main difference between YOLOv8 and its predecessor is the use of anchor-free detection 

on its head. Anchor-free means it eliminates the reliance on pre-determined anchor points 

for each cell on the prediction image. The loss function that was used on YOLOv8 is CIoU 

(Complete Intersection over Union) Loss (Zheng et al., 2020) for the IoU bounding boxes 

loss, DFL (Distributional Focal Loss) (Li et al., 2020) for the distributional bounding boxes 

loss within an instance (one’s image predictions), and BCE (Binary Cross Entropy) for its 

objectness loss. The CIoU loss is expressed as follows: 

 

𝐼𝑜𝑈 =  
|𝐵 ∩ 𝐵𝑔𝑡|

|𝐵 ∪ 𝐵𝑔𝑡|
, (1) 

𝐿𝐶𝐼𝑜𝑈 = 1 −  𝐼𝑜𝑈 +  
𝜌(𝐵, 𝐵𝑔𝑡)

𝑐2
+ 𝛼𝜐, (2) 

𝛼 =  {
0,                                   𝐼𝑜𝑈 < 0.5

𝜐

(1 − 𝐼𝑜𝑈) +  𝜐
, 𝐼𝑜𝑈 ≥ 0.5 , (3) 

𝜐 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛 

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)

2

(4) 

where, 𝐵 is the bounding boxes that were generated by the predictions of YOLO, 𝐵𝑔𝑡 

is the ground truth bounding boxes, 
𝜌(𝐵,𝐵𝑔𝑡)

𝑐2  is the Euclidean distance between the ground 

truth bounding boxes and the prediction bounding boxes, 𝜐 is the aspect ratio of the width 

and height for the bounding box of ground truth and prediction, and 𝛼 is the balancing 

parameter to keep 𝜐 normalize between 0 and 1. The calculation of the total loss of YOLOv8, 

so it can do a backward pass to update its weights, is formulated as follows: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐶𝐼𝑜𝑈𝐿𝐶𝐼𝑜𝑈 + 𝜆𝐷𝐹𝐿𝐿𝐷𝐹𝐿 + 𝜆𝐵𝐶𝐸𝐿𝐵𝐶𝐸 , (5) 

where, 𝜆 is the balance parameter that automatically updates after every epoch for 

each loss. 

YOLOv10 

YOLOv10 was released on the 23rd of May, 2024 (A. Wang et al., 2024). It 

introduces a new attention mechanism called the PSA (Partial Self-Attention) module, which 

is inspired by Vision Transformer (Dosovitskiy et al., 2020), as well as C2fCIB, which 

combines the C2f module with a new module called CIB (Compact Inverted Bottleneck), 

inspired by the Inverted Bottleneck in MobileNetv2 (Sandler et al., 2018). Furthermore, it 

also added a new method to eliminate discrepancies in bounding box predictions without the 

use of NMS (Non-Maximum Suppression) (Hosang et al., 2017) or NMS-free predictions. 

It utilizes a novel module, known as the One-to-One and One-to-Many prediction method, 

to replace the primary function of NMS, which is shown in the head section of Figure 2. The 

Loss function in YOLOv10 is the same as that in YOLOv8, other than the novel Loss 

function for calculating the loss between the One-to-One and One-to-Many (A. Wang et al., 

2024). 
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YOLO11 

YOLO11 was released on the 27th of May, 2024. YOLO11, developed by Ultralytics, 

is based on YOLOv8, with the novelty of replacing the C2f module within YOLOv8 with a 

novel C3k2 module, which further improves its efficiency and increases performance 

accuracy. Furthermore, YOLO11 incorporates a novel attention mechanism called C2PSA 

(2 Convolution Partial Self-Attention) placed after the SPPF module, similar to that of 

YOLOv10, to further improve the extraction capabilities of the primary extractor 

(backbone). The Loss function in YOLO11 is the same as that in YOLOv8. 

YOLOv12 

YOLOv12 was released on the 18th of February, 2025 (Tian et al., 2025). YOLOv12 

is based on YOLO11, with the novelty of replacing the existing C3k2 module with a novel 

A2C2f (Attention Area C2f) module, which incorporates an attention mechanism. Then, it 

was placed in a few locations inside the backbone and neck, replacing C3k2 and completely 

removing the attention mechanism of C2PSA, as well as the SPPF module from YOLO11. 

The incorporation of A2C2f aims to further enhance the feature map at the end of its primary 

extractor (backbone), extending all the way to the neck, thereby improving all missing 

features that have been affected by vanishing gradients in deep neural networks. The Loss 

function in YOLOv12 is the same as that in YOLOv8 

Dataset 

The dataset used in this research is publicly available on the Roboflow platform 

(gopletzzz, 2025). The train set comprises approximately 764 images, the validation set 

contains 87 images, and the test set comprises 23 images, totaling 874 images. The mold 

dataset contains only one class, called "bread_mold". Furthermore, when trained on 

YOLOv8, YOLOv10, YOLO11, and YOLOv12, the pre-existing architecture of Ultralytics 

on YOLOv8 already has a built-in feature that augments data to improve variation for better 

training. 

Training Configuration 

Table 1. Training Configuration 

Parameters Configuration 

Platform Kaggle 

GPU NVIDIA Tesla P100 

Image Size 640 x 640 

Epochs 300 

Batch Size 32 

Optimizer Stochastic Gradient Descent 

Learning Rate 0.01 

 

The training configuration for this research was conducted on Kaggle's cloud 

platform. The configurations are running on the NVIDIA Tesla P100 GPU, with an input 

image size of 640 × 640 and a batch size of 32. Running for 300 epochs with an optimizer 

of Stochastic Gradient Descent (SGD) with the default learning rate of YOLO 0.01, as shown 

in Table 1. 
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Evaluation Metrics 

In this study, the evaluation metrics used include F1 score, precision (P), recall (R), 

mean average precision (mAP). Additionally, the number of parameters (Parameters) was 

also considered. The formulas for these metrics are as follows: 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

, (6) 

where 𝑛 is the number of classes, in this research, there is only one, and 𝐴𝑃𝑘 is the 

mean of 𝑘 classes, so 𝑚𝐴𝑃 is the overall mean of the average of all classes’ score on the 

dataset. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (8) 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (9) 

where 𝑇𝑃 is True Positive, in this research, it means the model prediction bounding 

box is inside the ground truth, 𝐹𝑃 is False Positives, which means the model prediction's 

bounding box is within the image but not inside accurately enough, and 𝐹𝑁 is False 

Negatives, which means the model accurately predicts that there are no objects to be 

predicted. 

 

RESULTS AND DISCUSSION 

This section presents the experimental results and analysis of four YOLO variants, 

YOLOv8n, YOLOv10n, YOLO11n, and YOLOv12n, applied for detecting Rhizopus 

stolonifer mold on bread. The discussion encompasses model performance evaluation, 

comparative analysis across the four architectures, assessment of the custom mold detection 

dataset, and analysis of each model’s inference speed. These components collectively aim 

to validate the effectiveness, accuracy, and practical applicability of the proposed detection 

framework in real-world food inspection and safety monitoring contexts. 

Model Comparison 

The establishment of performance benchmarks and computational efficiency metrics 

through systematic comparison among multiple YOLO architectures represents a 

fundamental step in validating the scientific contribution and practical feasibility of deep 

learning-based mold detection on bread. This comparative analysis serves several critical 

objectives in assessing model performance, including demonstrating algorithmic 

advancements across YOLO generations, quantifying improvements in computational 

efficiency for potential real-time deployment, and providing empirical evidence of the trade-

off between detection accuracy and processing speed for each model. Such a comprehensive 

evaluation is essential in the evolving field of computer vision applications for food safety, 

where the adoption of efficient and reliable object detection systems can significantly 

enhance automated quality control and contamination prevention efforts. 

To ensure the integrity and reproducibility of the comparative process, this research 

employed a standardized benchmarking protocol using a custom bread mold dataset curated 
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via the Roboflow platform. The dataset features high-resolution images of bread under 

various environmental conditions, differing in lighting, background texture, and degrees of 

mold growth, to capture realistic scenarios encountered in bakery inspection environments. 

The benchmarking framework maintained consistent preprocessing routines, uniform 

training parameters, identical evaluation metrics, and equivalent hardware configurations 

across all YOLO models. This standardization ensured that observed performance 

differences could be attributed solely to architectural innovations rather than inconsistencies 

in experimental setup. 

The comparative methodology focused on two primary evaluation aspects relevant to 

practical food safety applications: detection performance and computational efficiency. 

Detection performance was assessed using standard computer vision metrics, including 

mean Average Precision (mAP) at IoU thresholds of 0.50 (mAP50) and 0.50:0.95 

(mAP50:95), as well as precision-recall analysis and F1-score evaluation to balance 

detection sensitivity and specificity. These metrics collectively provided a comprehensive 

understanding of each YOLO model’s capacity to accurately localize and identify Rhizopus 

stolonifer mold across diverse visual conditions. Meanwhile, computational efficiency was 

evaluated in terms of model size, inference time, and hardware utilization, factors critical for 

real-time implementation within automated bakery monitoring systems or embedded 

inspection devices. 

Table 2. Model Comparison with Mold on Bread Dataset 

Model Parameters GFLOPs 
Test mAP (%) 

F1 (%) 
mAP50 mAP50:95 

YOLOv8n 3,011,043 8.2 47.2 20.3 38.0 

YOLOv10n 2,707,430 8.4 47.4 19.1 34.0 

YOLO11n 2,590,019 6.4 50.4 20.4 39.0 

YOLOv12n 2,568,227 6.5 50.3 22.4 39.0 
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Figure 3. The results that have been generated by YOLOv8n (a), YOLOv10n (b), 

YOLO11n (c), and YOLOv12n (d), at the end of training of each model. 

 

Table 2 and Figure 3 present the comparative analysis results for the four YOLO 

variants: YOLOv8n, YOLOv10n, YOLO11n, and YOLOv12n, highlighting their respective 

accuracy and computational performance characteristics. The results indicate that YOLO11n 

achieved the highest mAP50 score of 0.504, while YOLOv12n achieved the highest 

mAP50:95 of 0.224, signifying superior detection consistency across varying intersection-

over-union thresholds. YOLOv8n and YOLOv10n demonstrated competitive yet slightly 

lower performance metrics, indicating that architectural enhancements in later YOLO 

versions contributed to improved model generalization and detection precision. 

A comparative analysis was also performed on the Precision and Recall of each 

YOLO variant used in this research. Precision refers to the model's accuracy in predicting, 

which is the percentage of all true positives among all positive predictions. Recall measures 

how well the model identifies all the correct instances in an image. The Precision and Recall 

can be expressed mathematically as follows: 
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Figure 4. Normalized confusion matrix for models of YOLOv8n (a), YOLOv10n (b), 

YOLO11n (c), and YOLOv12n (d). 

Figure 4 highlights the precision and recall of each YOLO variant, where, although 

YOLOv12n in Figure 4(d) achieves high accuracy in terms of mAP50:95, the percentage of 

True positives for detecting bread mold is the same as in YOLOv8n, as shown in Figure 4(a). 

Furthermore, YOLO11n achieves the highest True Positives percentage of 35%, as shown 

in Figure 4(c). 

Beyond numerical comparison, the analysis underscores the practical implications of 

model selection for industrial deployment. Although minor differences exist in detection 

accuracy, YOLO11n and YOLOv12n provide an advantageous balance between detection 

precision and computational demand, making them suitable for real-time inspection 

scenarios. Their compact model structures and high inference speeds allow deployment on 

low-power or edge devices typically found in bakery production lines, supporting continuous 

contamination monitoring without the need for high-end hardware infrastructure. These 

characteristics enhance operational scalability, reduce inspection latency, and promote the 

adoption of intelligent food safety technologies across various production settings. 

In summary, the comparative evaluation demonstrates that recent YOLO 

architectures deliver notable advancements in both accuracy and computational efficiency 

for mold detection tasks. The results confirm the robustness and adaptability of the YOLO 

framework in ensuring food quality and consumer safety through automated visual 
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inspection, laying the groundwork for future integration into innovative food monitoring 

systems. 

Qualitative Results Comparison 

 

Figure 5. Qualitative results of each YOLO variant trained on the Mold on Bread dataset 

This section compares the qualitative results between YOLOv8n, YOLOv10n, 

YOLO11n, and YOLOv12n. The findings show that YOLO11n provides better accuracy 

detection compared with the other YOLO variants in several cases, as shown in Figure 5. In 

the first column of the figure, YOLOv8n, YOLO11n, and YOLOv12n successfully detect 

all the molds on bread; however, YOLOv8n and YOLOv12n create double bounding boxes, 

consequently detecting more than they should. In the second column of the figure, only 

YOLO11n successfully detects two molds on bread compared with the other YOLO variants, 

while also interestingly, even though YOLOv12n achieves the highest mAP50:95, 

YOLOv12n manages to misdetect the background as the mold. In contrast, YOLO11n is 

more precise and generates a correct prediction (generating only one bounding box), as 

shown in Figure 5.  
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CONCLUSION 

The comparative analysis of YOLOv8n, YOLOv10n, YOLO11n, and YOLOv12n for 

detecting Rhizopus stolonifer mold on bread demonstrated that YOLO11n achieved the best 

overall performance, with the highest mAP50 of 0.504 and consistent qualitative accuracy 

across various test cases. While YOLOv12n attained the highest mAP50:95 of 0.224, 

qualitative observations revealed that it occasionally produced redundant bounding boxes or 

false detections, whereas YOLO11n consistently generated precise and stable predictions. 

These results confirm YOLO11n’s superior balance between detection accuracy and 

computational efficiency, making it most suitable for real-time bread mold detection in food 

inspection systems. This study demonstrates that modern nano YOLO architectures can 

effectively automate early-stage detection of fungal contamination, offering a practical 

alternative to labor-intensive visual inspection and culture-based methods in bakery quality 

control.  Future work should focus on expanding the dataset to include more diverse bread 

types and contamination conditions, integrating multispectral imaging for early-stage mold 

detection, and testing real-time deployment on embedded edge devices to enhance practical 

implementation in automated food safety monitoring environments. 
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