PREDIKSI ENERGI CELAH PITA DALAM TiO₂-ANATAS DAN TiO₂-ANATAS TERDADAH PERAK (Ag)

Hari Sutrisno

Jurusan Pendidikan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

ABSTRAK

Energi celah pita dalam TiO₂-anatas dan TiO₂-anatas terdadah perak (Ag-TiO₂-anatas) dapat diprediksi dengan pendekatan *density functional theory* (DFT). Persamaan Kohn-Sham digunakan untuk perhitungan berdasarkan pendekatan *density-functional theory* (DFT) dengan fungsi korelasi perubahan *local density approximation* (LDA) and *generalized gradient approximation* dari Perdew-Burke-Ernzerhof (GGA+PBE). Perhitungan prinsip awal energi celah pita dilakukan menggunakan metode unit sel konvensional TiO₂-anatas dan supersel (2x1x1) Ag-TiO₂-anatas dengan program ADF-BAND versi 2014.10 yang terdapat dalam paket program Amsterdam Density Functional (ADF). Hasil perhitungan energi celah pita untuk TiO₂-anatas diperoleh nilai energi celah pita berdasarkan LDA dan GGA+PBE sebagai fungsi korelasi perubahan, masing-masing sebesar 2,74 dan 2,87 eV. Pita antara (*intermediate band*) dihasilkan dari perhitungan energi celah pita dalam Ag-TiO₂-anatas dengan fungsi korelasi perubahan LDA and GGA+PBE). Hasil perhitungan energi celah pita dalam Ag-TiO₂-anatas dengan fungsi korelasi perubahan LDA and GGA+PBE). Hasil perhitungan energi celah pita dalam Ag-TiO₂-anatas dengan LDA sebesar 0,92 eV di atas pita valensi dan 1,74 eV di bawah pita konduksi, sedangkan dengan GGA+PBE sebesar 1,02 eV di atas pita valensi dan 1,78 eV di bawah pita konduksi.

Kata kunci: Anatas, TiO₂, perhitungan prinsip awal, energi celah pita

ABSTRACT

The band gaps of pure TiO₂-anatase and Ag-doped TiO₂-anatase have been predicted with density functional theory (DFT) approach. Kohn-Sham density functional theory calculations are performed using local density approximation (LDA) and generalized gradient approximation from Perdew-Burke-Ernzerhof (GGA+PBE) for exchange-correlation functionals. The first-principle calculations were done using unit cell convensional dan supercell (2x1x1) methods for TiO₂-anatase and Ag-doped TiO₂-anatase, respectively, as implemented within Amsterdam Density Functional (ADF) package of ADF-BAND version 2014.10. The calculated band gaps of pure TiO₂-anatase from LDA and GGA+PBE were 2.74 and 2.87 eV, respectively. The intermediate band has been resulted from the calculated band gaps of Ag-doped TiO₂-anatase using LDA were 0.92 eV above valence band and 1.74 eV below conduction band, meanwhile from GGA+PBE were 1.02 eV above valence band and 1.78 eV below conduction band.

Keywords: Anatase, TiO₂, first-principle calculation, band gap

PENDAHULUAN

Titanium dioksida atau titania (TiO_2) merupakan salah satu material yang sangat menjanjikan untuk diterapkan dalah kehidupan manusia, dikarenakan sifa-sifat yang baik tentang stabilitas fisika-kimia, afinitas oksidasi, kekerasan mekanik, superior fotoreaktifitas, dan sifat-sifat optoelektronik. Titania digunakan secara luas sebagai pikmen putih dalam cat, kosmetik, fotoelektrokimia, dan fotokatalis dalam industri. Titanium dioksida merupakan semikonduktor tipe-n yang potensial untuk aplikasi dalam sel fotovoltaik (Grätzel, 2005; Tan

permukaan (Ashkarran & Mohammadizadeh, 2008; Masuda & Kato, 2008), fotokatalis (Awati dkk., 2003; Muctuma dkk., 2015; Zhang dkk., 2016), antibakteri (Galkina dkk., 2014; Haghi dkk., 2012; Huang dkk., 2000; Verdier, dkk., 2014), dan sensor (Goyal dkk., 2010; Pustelny dkk., 2012).

Titanium dioksida ditemukan hinga saat ini ada sebelas jenis alotropik, namun di alam terdapat tiga fasa TiO_2 yaitu anatas, rutil dan brookit (Mo dkk., 1995). Anatas dan rutil merupakan bentuk struktur yang paling stabil dan keduanya diproduksi dalam skala industri untuk

^{*} Korespondensi :

E-mail: sutrisnohari@unv.ac.id

DOI: https://doi.org/10.35799/cp.8.2.2015.13264

berbagai aplikasi. Aplikasi TiO₂ berkaitan dengan sifat-sifat optik., oleh karena itu umumnya efektifitas dan efisiensi penggunaan TiO₂ ditentukan energi celah pitanya. Energi celah pita TiO₂ (bulk) fasa anatas sebesar 3,2 eV (Asahi dkk., 2001), fasa rutil sebesar 3.0 eV (Grant, 1959), dan fase brookit sebesar 3,4 eV (Tang dkk., 1994). Ketika TiO₂ diradiasi dengan sinar vang memiliki energi sama atau lebih tinggi dari energi celah pita, maka terjadi perpindahan elektron dari pita valensi ke pita konduksi vang menghasilkan suatu kekosongan *(hole atau h⁺)* pada pita valensi dan elektron bebas (e⁻) pada pita konduksi. Peningkatan fotoaktivitas TiO₂ dilakukan dengan menurunkan energi celah pita. Sejumlah metode telah diteliti untuk menurunkan energi beda pita TiO₂. Metode vang banyak dilakukan dengan cara memasukkan pendadah (dopant) logam, seperti: Cr. Ce, Sc. V. Mn, Fe, Cu, Co, W, dll. (Chang dkk., 2014; Tian dkk., 2012; Thuy dkk., 2012; Zhang dkk., 2013) dan non-logam, seperti: S, N, C dll. (Dong dkk., 2008; Xu dkk., 2006; Zhao dkk., 2013) ke dalam struktur TiO₂ melalui penggantian (substitution) penvisipan (interstition) atom untuk dan memodifikasi struktur elektroniknya. Adanya pendadah tersebut dapat meningkatkan tepi pita valensi dan menurunkan energi celah pita tanpa menurunkan pita konduksi atau terbentuknya pita antara (intermediate band).

Logam perak (Ag) merupakan salah satu pendadah logam yang digunakan melalui penggantian dan penyisipan dalam struktur TiO₂ yang banyak digunakan sebagai bahan antibakteri fotokatalisator (Al-Hartomy, dan 2014; Ashkarran, 2011; Gupta dkk., 2013; Harikishore dkk., 2014; Ma dkk., 2014). Akhir-akhir ini, penelitian tentang pendadah logam perak disubstitusikan ke dalam struktur TiO₂ telah secara intensif dipelajari baik secara eksperimen maupun perhitungan teoritik dalam usaha untuk menggeser serapan TiO₂ dari daerah sinar UV ke daerah sinar tampak sehingga fotoaktifitasnva lebih baik. Berdasarkan hal tersebut, artikel ini membahas perhitungan awal untuk memprediksi energi celah pita TiO₂-anatas terdadah perak (Ag-TiO₂-anatas) berdasarkan pendekatan densityfunctional theory (DFT) dengan local density approximation (LDA) dan generalized gradient approximation dari Perdew-Burke-Ernzerhof (GGA+PBE) sebagai fungsi korelasi perubahan.

BAHAN DAN METODE

Persamaan Kohn-Sham digunakan pada perhitungan prinsip awal secara *ab-initio* berbasis pendekatan *density-functional theory* (DFT) dengan *local density approximation* (LDA) (Kohn & Sham, 1965) dan *generalized gradient approximation* dari Perdew-Burke-Ernzerhof (GGA+PBE) (Perdew dkk., 1996) sebagai fungsi korelasi perubahan dengan paket program Amsterdam Density Functional (ADF) ADF-BAND versi 2014.10 (Team SCM, 2014).

Gambar 1. Model struktur: (a) TiO_2 -anatas (unit sel) dan (b) TiO_2 -anatas terdadah perak (Ag- TiO_2 -anatas) dengan metode supersel (2x1x1)

Model struktur yang digunakan dalam perhitungan ini berasal dari model struktur TiO₂anatas eksperimen tanpa dilakukan optimasi geometri, yang memiliki sistem kristal tetragonal dan grup ruang I4₁/*amd*, dengan parameter kisi: a = b = 3,8048 Å dan c = 9,5962 Å (Hari Sutrisno, 2012). Struktur anatas digambarkan dalam keteraturan tiga dimensi terhubungan sisi dan puncak dari oktahedral TiO₆. Masing-masing ion Ti⁴⁺ dikelilingi secara oktahedral oleh enam ion oksigen (O²⁻). Atom titanium (Ti⁴⁺) dalam TiO₂anatas disubstitusi oleh atom pendadah perak (Ag^+) dalam metode super-sel (2x1x1) yang berisi total 24 atom, sehingga membentuk rumus molekul: Ti₈AgO₁₅ dengan prosentase berat atom perak sebesar 14,76%.

HASIL DAN DISKUSI

Density of states (DOS) berbasis pendekatan density-functional theory (DFT) dengan local density approximation (LDA) dan generalized gradient approximation dari Perdew-Burke-Ernzerhof (GGA+PBE) sebagai fungsi perubahan untuk korelasi TiO₂-anatas ditampilkan dalam Gambar 2, sedangkan untuk TiO₂-anatas terdadah perak (Ag-TiO₂-anatas) ditampilkan dalam Gambar 3. Berdasarkan perhitungan untuk karakter DOS-anatas (Gambar 2), orbital atom: 1s, 2s, 2p dari Ti, dan orbital atom 1s dari O sebagai core state; orbital atom: 3s, 3p dari Ti, orbital atom 2s dari O sebagai semi-core state; orbital atom: 3d, 4s dari Ti, dan orbital atom 2p dari O sebagai valence state. Karakter DOS total untuk TiO₂-anatas menunjukkan bahwa pita valensi utamanya kontribusi dari orbital atom O 2p, sedangkan pita konduksi kontribusi dari orbital atom Ti 3d.

Gambar 2(a) merupakan karakter DOS TiO₂-anatas dengan LDA sebagai fungsi korelasi perubahan, tampak terdapat tiga grup pita yaitu pada daerah sekitar -14 eV hingga -12,5 eV merupakan orbital atom O 2s, daerah sekitar -1,5 eV hingga 3 eV (pita valensi) yang terletak di bawah Energi Fermi (E_F) utamanya tersusun dari orbital atom O 2p dan daerah sekitar 5,5 eV hingga 10.5 eV (pita konduksi) yang terletak di atas Energi Fermi utamanya tersusun dari orbital atom Ti 3d. Gambar 2(b) merupakan karakter DOS TiO₂-anatas dengan GGA+PBE sebagai fungsi korelasi perubahan, tampak terdapat tiga grup pita yaitu pada daerah sekitar -13 eV hingga -12 eV merupakan orbital atom O 2s, daerah sekitar -0.5 eV hingga 4 eV (pita valensi) yang terletak di bawah Energi Fermi (E_F) utamanya tersusun dari orbital atom O 2p dan daerah sekitar 6,5 eV hingga 11,5 eV (pita konduksi) yang terletak di atas Energi Fermi utamanya tersusun dari orbital atom Ti 3d. Secara struktur, ion Ti⁴⁺ dalam anatas dikelilingi 6 ion O²⁻ dalam bentuk oktahedral. Tingkat energi 3d merupakan kontribusi terbentuknya pita konduksi terbelah menjadi dua tingkat energi yaitu tingkat energi lebih rendah t_{2g} (berisi 3 orbital: $3d_{xv}$, $3d_{xz}$ dan $3d_{vz}$) dan tingkat enrgi lebih tinggi eg (berisi 2 orbital: $3d_{x-y}^{2-2}$ dan $3d_{z}^{2}$). Hasil perhitungan berdasar pendekatan DFT dengan LDA pada TiO₂-anatas diperoleh lebar tingkat energi t_{2g} sebesar 2,27 eV dan lebar tingkat energi e_g sebesar 2,47 eV, sedangakan berdasar pendekatan DFT dengan GGA+PBE diperoleh lebar tingkat energi t_{2g} sebesar 2,15 eV dan lebar tingkat energi e_g sebesar 2,55 eV.

Gambar 2. Density of States (DOS) total dan parsial TiO_2 -anatas berdasar fungsi korelasi perubahan: (a). LDA dan (b). GGA+PBE

Hasil perhitungan diperoleh lebar pita valensi sebesar 4,75 eV (LDA) dan 4,76 eV (GGA+PBE) yang sesuai dengan data eksperimen yaitu 4,75 eV serta penelitian terdahulu (Mo & Ching, 1995; Rubio-Ponce dkk., 2008). Hasil perhitungan energi celah pita minimal untuk TiO₂-anatas sebesar 2,74 eV (LDA) dan 2,8 eV (GGA+PBE), yang lebih kecil dari nilai pengukuran eksperimen yaitu 3.20 eV (Asahi dkk., 2001; Tang dkk., 1994). Hal ini dikarenakan perhitungan teoritik mengasumsikan kristal sempurna tanpa adanya defek, sebaliknya TiO₂-anatas hasil eksperimen bukanlah kristal sempurna dan banyak ditemui defek atau kekosongan atom O dan Ti. Hasil perhitungan energi celah pita TiO₂-anatas sebesar 2,74 eV tersebut mirip dengan hasil perhitungan energi celah pita kristal TiO₂-anatas menggunakan LDA sebagai fungsi perubahan potensial sebesar 2,0 -2,7 eV (Mo & Ching, 1995) dan 2,47 eV (Xu dkk., 2006).

Gambar 3 menunjukkan DOS total dan parsial untuk Ag-TiO2-anatas dari substitusi atom Ti oleh pendadah atom Ag dalam struktur TiO₂anatas. Berdasarkan perhitungan untuk karakter DOS-anatas (Gambar 3), orbital atom: 1s, 2s, 2p dari Ti, dan orbital atom: 1s, 2s, 2p, 3s, 3p dari Ag, orbital atom 1s dari O sebagai core state; orbital atom: 3s, 3p dari Ti, orbital atom: 4s, 4p dari Ag, orbital atom 2s dari O sebagai semi-core state; orbital atom: 3d, 4s dari Ti, orbital atom: 4d, 5s dari Ag, dan orbital atom 2p dari O sebagai valence state. Karakter DOS total untuk TiO2anatas menunjukkan bahwa pita valensi kontribusi utama dari orbital atom O 2p, dan pita antara kontribusi utama dari orbital atom Ag 4d, sedangkan pita konduksi kontribusi utama dari orbital atom Ti 3d. Secara struktur, ion Ti⁴⁺ dalam anatas dikelilingi 6 ion O2- dalam bentuk Tingkat energi 3d merupakan oktahedral. kontribusi terbentuknya pita konduksi terbelah menjadi dua tingkat energi yaitu tingkat energi lebih rendah t_{2g} (berisi 3 orbital: $3d_{xy}$, $3d_{xz}$ dan $3d_{vz}$) dan tingkat enrgi lebih tinggi eg (berisi 2 orbital: $3d_{x-y}^{2-2}$ dan $3d_{z}^{2}$). Hasil perhitungan berdasar pendekatan DFT dengan LDA pada Ag-TiO₂-anatas diperoleh lebar tingkat energi t_{2g} sebesar 2,07 eV dan lebar tingkat energi eg sebesar 2,25 eV, sedangakan berdasar pendekatan DFT dengan GGA+PBE diperoleh lebar tingkat energi t_{2g} sebesar 2,12 eV dan lebar tingkat energi eg sebesar 2,27 eV. Hasil ini mirip dengan hasil perhitungan Wu et. al. (2011) dengan metode FP-LAPW dalam TiO₂-anatas teradah perak (Ag-TiO₂-anatas) yaitu lebar tingkat energi t_{2g} sebesar 2,14 eV dan lebar tingkat energi eg sebesar 2,24 eV.

Gambar 3. *Density of States* (DOS) total dan parsial Ag-TiO₂-anatas berdasar fungsi korelasi perubahan: (a). LDA dan (b). GGA+PBE

Gambar 3(a) dan 3(b) terlihat empat grup pita vaitu pada daerah sekitar -17,5 eV hingga -16 eV merupakan orbital atom O 2s, pita pada daerah sekitar -8 eV hingga 0 eV (pita valensi) yang terletak di bawah Energi Fermi (E_F) utamanya tersusun dari orbital atom O 2p merupakan orbital O 2p dan Ag 4d, daerah sekitar 0,5 eV hingga 1,2 eV merupakan orbital atom Ag 4d (pita antara), dan daerah sekitar 2 eV hingga 7 eV (pita konduksi) yang terletak di atas Energi Fermi utamanya tersusun dari orbital atom Ti 3d. Pita antara setebal 0,29 eV pada daerah sekitar 0,85 eV yang diperoleh dengan LDA, sedangkan pita antara setebal 0,31 eV pada daerah sekitar 0,85 eV vang diperoleh dengan **GGA+PBE** merupakan konstribusi dari orbital atom Ag 4d. Energi celah pita antara pita valensi dengan pita konduksi sebear 2,85 eV (LDA) dan 2,93 eV

(GGA+PBE). Adanya pita antara tersebut menghasilkan 2 energi celah pita yaitu 0,92 eV dan 1,74 eV dengan LDA, sedangkan dengan GGA+PBE yaitu 1,02 eV dan 1,78 eV.

Berdasarkan penjelasan di atas, dapat diketahui bahwa penambahan pendadah atom Ag

dalam struktur TiO₂-anatas melalui substitusi atom Ti menyebabkan terbentuknya pita antara (*intermediate band*) yang terlokalisasi dekat pita valensi dan menghasilkan energi celah pita baru sebesar 1,74 eV (LDA) dan 1,78 eV (GGA+PBE) (Gambar 4).

Gambar 4. Energi celah pita: (a). TiO₂-anatas (LDA), (b). TiO₂-anatas (GGA+PBE), (c). Ag-TiO₂-anatas (LDA), dan (d). Ag-TiO₂-anatas (GGA+PBE)

Tabel 1. Energi celah pita TiO₂-anatas dan Ag-TiO₂-anatas dari hasil perhitungan dan berbagai penelitian

	Energi celah pita (Eg) (eV)			
	TiO ₂ -anatas	Ag-TiO ₂ -anatas		
	(O2 <i>p</i> - Ti3 <i>d</i>)	(O2 <i>p</i> -Ag4 <i>d</i>)	(Ag4 <i>d</i> -Ti3 <i>d</i>)	(O2 <i>p</i> -Ti3 <i>d</i>)
Artikel ini :				
Fungsi Korelasi Perubahan				
LDA	2,74	0,92	1,74	2,85
GGA+PBE	2,87	1,02	1,78	2,93
Kajian Teori				
GGA (Huo dkk.,2009)	2,30			
GGA (Zhou, 2013)	2,54			
FP-LAPW (Wu dkk., 2011)	2,04	0,83	1,20	2,50
Eksperimen				
Nanopartikel (Zhao dkk., 2007)	3,28			
Nanopartikel (3 nm) (Reddy dkk., 2001)	3,167			
Nanopartikel (6 nm) (Reddy dkk., 2001)	3,145			
Bulk (Asahi dkk., 2001)	3,20			

Hasil perhitungan untuk TiO₂-anatas menghasilkan energi celah pita sebesar 2,74 eV (LDA) dan 2,87 eV (GGA+PBE). Penambahan pendadah atom Ag sebesar 14,76 % menghasilkan pita antara setebal 0,29 eV yang berjarak dari pita valensi sebesar 0,92 eV dan jarak ke pita konduksi sebesar 1,74 eV dengan LDA, sedangkan dengan GGA+PBE menghasilkan pita antara sebesar 0,31 eV yang berjarak dari pita valensi sebesar 1,02 eV dan jarak ke pita konduksi sebesar 1,78 eV. Tabel 1 menunjukkan energi celah pita dari hasil penelitian maupun perhitungan terdahulu. Bardasarkan Tabel 1, hasil perhitungan energi celah pita selalu lebih kecil dari nilai pengukuran eksperimen. Hal ini dikarenakan perhitungan teoritik mengasumsikan kristal sempurna tanpa adanya defek, sebaliknya TiO₂-anatas hasil eksperimen bukanlah kristal sempurna dan banyak ditemui defek atau kekosongan atom O dan Ti.

KESIMPULAN

Energi celah pita TiO₂-anatas dan TiO₂anatas terdadah perak (Ag-TiO₂-anatas) telah berhasil dipelajari berdasarkan perhitungan prinsip awal secara *ab-initio* menggunakan pendekatan *density funtional theory* dengan *local density approximation* (LDA) dan *generalized* gradient approximation dari Perdew-Burke-Ernzerhof (GGA+PBE) sebagai fungsi perubahan korelasi dengan metode supersel (2x1x1). Hasil perhitungan untuk TiO₂-anatas menghasilkan energi celah pita sebesar 2,74 eV (LDA) dan 2,87 eV (GGA+PBE). Penambahan pendadah atom Ag sebesar 14,76 % menghasilkan pita antara setebal 0,29 eV yang berjarak dari pita valensi sebesar 0,92 eV dan jarak ke pita konduksi sebesar 1,74 eV berdasarkan LDA, sedangkan berdasarkan GGA+PBE menghasilkan pita antara sebesar 0,31 eV yang berjarak dari pita valensi sebesar 1,02 eV dan jarak ke pita konduksi sebesar 1,78 eV.

DAFTAR PUSTAKA

- Al-Hartomy, O.A. 2014. Synthesis, characterization, photocatalytic and photovoltaic performance of Ag-doped TiO₂ load on the Pt-carbon spheres. *Materials Science in Semiconductor Processing*, 27, 71-78.
- Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. *Science*, 293(5528), 269-271.
- Ashkarran, A.A. 2011. Antibacterial properties of silver-doped TiO₂ nanoparticles under solar simulated light. *Journal of Theoretical and Applied Physics*. 4-4, 1-8.
- Ashkarran, A.A. & Mohammadizadeh, M.R. 2008. Superhydrophilicity of TiO₂ thin films using TiCl₄ as a precursor. *Materials Research Bulletin*. 43(3), 522-530.
- Awati, P.S., Awate, S.V., Shah, P.P. & Ramaswamy, V. 2003. Photocatalytic decomposition of methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique. *Catalysis Communications*. 4(8), 393-400.
- Chang, S. M. & Liu, W. S. 2014. The Roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce and W) in the interfacial behavior of TiO₂ photocatalysts. *Applied* Catalysis *B*: *Environmental*, 156-157, 466-475.
- Dong, F., Zhao, W. & Wu, Z. 2008. Characterization and photocatalytic activities of C, N and S co-doped TiO₂ with 1D nano-structure prepared by the nanoconfinement effect. *Nanotechnology*. 19(36), 365607-365617.
- Galkina, O. L., Sycheva, A., Blagodatskiy, A., Kaptay, G., Katanaev, V. L., Seisenbaeva,

G. A., Kessler, V. G. & Agafonov. A.V. 2014. The Sol-gel synthesis of cotton/tio₂ composites and their antibacterial properties. *Surface and Coatings Technology*, 253, 171-179.

- Goyal, R. N., Kaur, D. & Pandey, A. K. 2010. Voltammetric sensor based on nano TiO₂ powder modified glassy carbon electrode for determination of dopamine. *The Open Chemical and Biomedical Methods Journal*, 3(1), 115-122.
- Grant F. A. 1959. Properties of rutile (Titanium Dioxide). *Reviws of Modern Physic*, 31(3), 646-650.
- Grätzel, M. 2005. Solar energy conversion by dye-sensitized photovoltaic cells. *Inorganic Chemistry*. 44(20), 6841-6851.
- Gupta, K., Singh, R.P., Pandey, A. & Pandey, A.
 2013. Photocatalytic Antibacterial performance of TiO₂ and Ag-doped TiO₂ against S. aureus. P. aeruginosa and E. coli. Beilstein Journal of Nanotechnology. 4, 345-351.
- Haghi, M., Hekmatafshar, M., Janipour, M.B., Gholizadeh S.S., Faraz, M.K., Sayyadifar, F., & Ghaedi, M., 2012, Antibacterial effect of tio₂ nanoparticles on pathogenic strain of *E. coli. International Journal of Advanced Biotechnology and Research*, 3(3), 621-624.
- Hari Sutrisno. 2012. Transformasi polimorfik dan karakterisasi mikrostruktur fasa tio₂ yang dihasilkan melalui kalsinasi nanopita hidrogen titanat. *Jurnal Sains Dasar*, 1(1), 18-32.
- Harikishore, M., Sandhyarani, M., Venkateswarlu, K., Nellaippan, T.A., & Rameshbabu, N., 2014. Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO₂. *Procedia Materials Science*, 6, 557-566.
- Huang, Z., Maness, P. C., Blake, D. M., Wolfrum, E. J., Smolinski, S. & Jacoby, W.
 A. 2000. Bacteri-cidal mode of titanium dioxide photocatalysis. *Journal* of Photochemistry and Photobiology A: Chemistry, 130(2-3), 163-170
- Huo, X.G., Huang, M.D., Wu, X.L. & Liu, A.D. 2009. First-principle calculations on implanted TiO₂ by 3d transition metal ions. *Science in China Series G: Physics, Mechanics & Astronomy*, 52(6), 838-842.
- Kohn, W., & Sham, L.J. 1965. Self-consistent equations including exchange and

A1133- A1137.

- Ma, J., Guo, X., Zhang, Y. & Ge, H. 2014. Catalvtic performance of tio2@ag composites prepared by modified photodeposition method. Chemical Engineering Journal, 258, 247-253.
- Masuda, Y. & Kato, K. 2008. Liquid-phase patterning and microstructure of anatase TiO_2 Films on SnO_2 : F substrates using superhydrophilic surface. Chemistry of Material, 20(3), 1057-1063.
- Mo, S. D. & Ching, W. Y. 1995. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical review. B, Condensed matter. 51(19), 13023-13032.
- Muctuma, B. K., Shao, G. N., Kim, W. D., & Kim, H. T. 2015. Sol-gel synthesis of mesoporous anatase-brookite and anatasebrookite-rutile TiO₂ nanoparticles and their photocatalytic properties. Journal of Colloid Interface Science, 442, 1-7.
- Perdew, J. P., Burke, K., & Ernzerhof, M. 1996. Generalized gradient approximation made simple. Physical Review Letter, 77(18), 3865-3868.
- Pustelny, T., Procek, M., Maciak, E., Stolarczyk, Drewniak, S., Urbańczyk, A., М., Setkiewicz, M., Gut, K., & Opilski, Z. 2012. Gas sensors based on nanostructures of semiconductors ZnO and TiO₂. Bulletin of the Polish Academy of Sciences Technical Sciences, 60(4), 853-959.
- Reddy, K.M., Reddy, C.V.G. & Manorama, S.V. 2001. Preparation, characterization, and spectral studies on nanocrystalline anatase-TiO₂. Journal of Solid State Chemistry, 158(2), 180-186.
- Rubio-Ponce, A., Conde-Gallardo, A. & Olguín, D. 2008. First-principles study of anatase and rutile TiO₂ doped with Eu ions: A comparison of GGA and LDA+U calculations. Physical Review B, 78, 035107-1-035107-8.
- Tan, B., & Wu, Y. 2006. Dye-sensitized solar cells based on anatase TiO₂ nanoparticle/ C nanowire composites. Journal of Physical Chemistry B, 110(32), 15932-15938.
- Tang H., Prasad K., Sanjinès R., Schmidt P. E. & Lévy F. 1994. Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics, 75, 2042-2047.

- correlation effects. *Physical Review B*, 140, Team SCM, 2014. ADF-band version 2014.10, theoretical chemistry, Vrije Universiteit, Amsterdam, Netherlands. The http://www.scm.com
 - Thuy, N.M., Van, D.Q. & Hai, L.T.H., 2012, The visible light activity of the TiO₂ and $TiO_2:V^{4+}$ photocatalyst. Nanomaterial and Nanotechnology. 2, 1-8.
 - Tian, B., Li, C., & Zhang, J. 2012. One step preparation, characterization and visiblelight photo-catalytic activity of Cr-doped TiO₂ with anatase and rutile bicrystalline phases. Chemical Engineering Journal, 191, 402-409.
 - Verdier, T., Coutand, M., Bertron, A. & Roques, C. 2014. Antibacterial activity of TiO₂ photocatalyst alone or in coatings on E. Coli: The influence of methodological aspects. Coatings, 4(3), 670-686.
 - Wu, X.Y., Liao, B., Liang, H. Zhang, X. & Liu, A.D. 2011. Theoritic and experimental studies on Titania nanotube doped with Ag metal ions. Chinese Journal of Structural Chemistry. 30(9), 1332-1340.
 - Xu, T. H., Song C. L., Liu, Y. & Han, G. R. 2006. Band structures of TiO₂ doped with N, C and B. Journal of Zhejiang University Science B, 7(4), 299-303.
 - Zhang, D. R., Liu, H. N., Han, S. Y. & Piao, W. X., 2013. Synthesis of Sc- and V-doped TiO₂ nano-particles and photodegradation of Rhodamine-B. Journal of Industrial and Engineering Chemistry, 19(6), 1838-1844.
 - Zhang, J., Wu, B., Huang, L., Liu, P., Wang, X., Lu, Z., Xu, G., Zhang, E., Wang, H., Kong, Z., Xi, J., & Ji, Z. 2016. Anatase nano-TiO₂ with exposed curved surface for high photocatalytic activity. Journal of Alloys and Compounds, 661, 441-447.
 - Zhao, K., Wu, Z., Tang, R. & Jiang, Y. 2013. Preparation of highly visible-light photocatalytic active n-doped TiO₂ microcuboids. Journal of Korean Chemical Society, 57(4), 489-492.
 - Zhao, Y., Li, C., Liu, X., Gu, F., Jiang, H., Shao, W., Zhang, L. & He, Y. 2007. Synthesis optical properties of and TiO₂ nanoparticles. Materials Letters. 61(1), 79-83.
 - Zhou, X. 2013. Electronic structure primary principle based on anatase phase TiO₂. International Journal of Advancements in Computing Technology. 5(9), 230-237.