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Abstract 

Rotationally Symmetric Harmonic Maps from a Ball into a Sphere has been studied before. The systems 

conducted in this study can be analyzed further by checking its stability and its behavior in the system. This 

paper will show how to determine the stability of the system and its behaviour by reducing it into a damped 

pendulum equation differential equation.  
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Kestabilan dan Sifat dari Pemetaan Harmonik yang Berotasi Simetris dari 

Sebuah Bola ke Sebuah Sphere  
 

Abstrak 

Pemetaan Harmonik yang Berotasi Simmetris dari sebuah bola ke sebuah “sphere” telah dipelajari 

sebelumnya. Sistem yang ditemukan dalam studi ini bisa dianalisa lebih lanjut dengan memeriksa kestabilan 

dan sifat-sifatnya dalam sistem. Tulisan ini akan menunjukkan cara untuk menentukan kestabilan sistem dan 

sifat-sifatnya dengan mengubahnya ke dalam bentuk persamaan differensial pendulum sederhana. 

Kata kunci:Rotasi simetris, Pemetaan harmonic, Kestabilan, Persamaan pendulum sederhana. 

 

 

1. Introduction 

 An object with rotational symmetry is an object that looks the same after a certain amount 

of rotation. A map between two compact Riemannian manifolds is a harmonic map if it is a critical 

point for the energy functional. For example, a map from a circle to the equator of standard 2-

sphere is a harmonic map, and so are the maps that take the circle and map it around the equator   

times, for any integer  .  

 

Let   be a  -dimensional Riemannian manifold (with or without boundary) with a smooth 

Riemannian metric  . In a local coordinates around fixed point    ,   can be represented by 

            , 

where     is a positive definite symmetric     matrix. Let            
  

 be the inverse matrix 

of       and the volume element of       is 

          , 

where             . Let   be another  -dimensional compact Riemmanian manifold (without 

boundary) with a smooth Riemmanian metric  . 

For a map      , its Dirichlet energy functional is defined by 

          
 

    

where the density function      is given by  

        
 

 
         

 

 
                

       

   

   

   

   
 

 

A smooth map   from   to   is said to be a harmonic map if   is a critical point of the Dirichlet 

energy functional  ; i.e. it satisfies 
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in  , where    is the Laplacian operator with respect to the Riemmanian metric of   and   is the 

second fundamental form of  . 

In this case, the harmonic map was considered to be from unit ball to unit sphere which satisfies a 

variational problem in Euler equation form: 

                                                                  .  (1.1) 

Let     be an upper bound for the sectional curvature of   and       the open geodesic ball in 

  with center   and radius  . Assuming essentially the size restriction 

                                                               ,    
 

   
,  (1.2) 

Hilderbrandt et. Al. [5] showed existence of a “small” smooth harmonic maps satisfying (1.2). This 

was shown by considering solution of a Dirichlet problem, which is smooth in the interior and 

minimizes the energy in the class in       having the boundary values  . In the case where   is 

the standard sphere the smallness condition restricts the image of the boundary values and the 

solution to an open half-sphere.  

Suppose B
n
 denotes the compact unit ball in the Euclidean space R

n
, and S

n
 the unit sphere in R

n+1
. 

Select the point given by the      -th standard base vector      in      as northpole of the 

sphere. Every map         can be written in the form 

                                                                       (1.3) 

with maps 

                           

  measures the Riemannian distance from      to the northpole on the sphere and is called radius 

function of  . The map   is uniquely defined by   except for points x where           . A 

map         is rotationally symmetric if and only if  

                                               
 

   
 and            .   (1.4) 

In order to study the question what happens if the smallness condition is violated, the family of 

boundary values can be defined as 

                              

which is considered as an homotopy with parameter        . For     as shown by Lemaire in 

[3] and     by Wood in [1], harmonic maps from    into a Riemannian manifold are constant if 

they are constant on the boundary. Therefore, for     and     the Dirichlet problem has 

exactly one trivial solution.  

 

In this project, the harmonic maps were restricted to rotationally symmetric behavior. The stability 

of the result will be shown by reducing the discussion to ordinary differential equation, especially 

to the damped pendulum equation.  

 

2. Rotationally Symmetric Harmonic Maps 

 We are going to study rotationally symmetric maps with finite energy. Recall that every 

map         can be written in the form 

                                                                       (2.1) 

with maps 

                           

  measures the Riemannian distance from      to the northpole on the sphere and is called radius 

function of  . A map         is rotationally symmetric if and only if  

                                                
 

   
 and            .                                       (2.2) 

In this case, metric form of the manifold can be written as [2]: 

                     

Since the projection assumed is projection from unit ball to unit sphere, then this can be assumed as 

a function in geodesic coordinate of a sphere, i.e.          . 

Therefore, for       
 

 
                , with radius function               depending 

only on      , the metric form can be written as 
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And 

                             
 

 
  

 

 

Suppose           ,                 
               

                           
and can be written in differential equation [2,4] as follows: 

                  
   

 
                                                                                       (2.3) 

The energy can be expressed in term of     : 

     
  

 
          

   

   
                     

 

  

 

            
  

 
                                           

 

  

 

            
  

 
                                 

 

  
       (2.4) 

The differential equation (2.3) can be written in damped pendulum equation form as follows. 

Set              and           , then 

                                      
  

  
   

 

                         (2.5) 

The critical points of this system, i.e. when              , imply critical points in phase plane 

            , which are            , and   

 
   . 

Here, we have to study those solutions corresponding to harmonic maps with finite energy. In this 

analogy the equator corresponds to the stable respoint, whereas the northpole and the southpole 

correspond to unstable restpoint.  

Consider a function:             
 

                     (2.6) 

Then  

                                                

                          
     

 
          

By (2.3),        
   

 
                    , thus 

                           

                         
 
       (2.7) 

for    ,         

Since               , then            

This means        

These properties, i.e.        and        , satisfy the properties of a Lyapunov function. 

Therefore,      is a Lyapunov function for the differential equation. 

Equivalently, for             ,                  can be written as 

                          
 
                                           (2.8) 

For       , 

       
    

                                

Then because of (2.8)  

                                                                               (2.9) 

 

 

and by partial integration,      can be written as: 
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It is clear that  

               

 

  

              
  

 
                    

 

  

 

Thus, 

      
  

      
              

  

 
  

Since                      

      
  

      
       

             
  

      
         

 
                 

            
       

      
          

      

   
      (2.10) 

These results can be used to classify the rotationally symmetric maps of finite energy as follows. 

 

Lemma 1 

Let             be the radius function of a rotationally symmetric harmonic map u with finite 

energy. Then the following cases are possible: 

For n = 2 

(i)                   or        with some constant     

For    , either 

(ii)   is constant with values   
 

 
 or  , 

or 

(iii)   is extendable to a solution of  the differential equation  

                  
   

 
           

and 

                          or       

                    
 

 
     

 

Proof 

We extend   to a solution on  , which is possible due to the linear growth of the right hand side of 

(2.5).  

#For     

     in (2.9) gives                 which implies               , 

and therefore the equation in (3.8) becomes 

       
 

            

                

               
  

  
         

By using integration by part, this can be written as 
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Since  
 

    
          

 

 
    

which means 

      
 

 
     , for some constant   

   
 

 
               

  Thus,                     

                           

  

  
          

By using integration by part, this can be written as 

 
 

        
        

Since  
 

        
          

   

 
    

which means 

      
   

 
     , for some constant   

   
   

 
               

    Thus,                       

     and    are equivalent to case (i). 

# For    , 

     in (2.9), which implies               , and in (2.7), which implies        , give: 

                      

This ensures that the phase curve in              is bounded. 

By the definition of Lyapunov function and limit cycles, if        , then the critical points of the 

differential system are stable. This means all the trajectories in phase portrait              

converge to the critical points. This is equivalent to case (ii). 

Excluding case (ii) gives  

              or     and             
 

 
  

which are equivalent to case (iii). 

 

It is clear that             satisfying one of the cases (i) – (iii) lead to harmonic maps with 

finite energy.   

 

3. Stability 

 The result for      in lemma 1 explicitly shows all smooth rotationally symmetric 

harmonic maps with finite energy. 

Whereas for    , the result in lemma 1 shows that they are directly related to the trajectories of 

the equation connecting the critical points       and       with    

 
    in the phase plane 

            .  

Now consider the critical points in      -plane. They are              and      . For    , the 

critical points can be restricted to        and       corresponding to the northpole and the equator 

and their connecting trajectories. 

The behavior of the system (2.5) in the neighborhood of the critical points is determined by the 

linearized system as follows. 
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Linearize the system around critical point 

A Jacobian matrix:  

  

   

  

   

  

   

  

   

  

Then,    

  

  

  

  

  

  

  

  

   
  

                
        (3.1) 

For (0, 0) 

   
  

            
  

with eigenvalues 

 
    

              
    

                     

                  

  
  

                     

 
 

       
               

 
 

                           
  

               

 
   and      

  
               

 
       (3.2) 

And for        

   
  

           
  

With eigenvalues 

 
    

             
    

                     

                  

  
  

                     

 
 

        
          

 
 

                   
  

        

 
 

 

 
   and   

  
        

 
 

     

 
            (3.3) 

Recall that the behavior and stability of the critical points in phase plane satisfy following 

properties [4]: 

(i) If the eigenvalues of the linearized matrix are real and distinct, then the solution of the system 

will be: 

- stable whenever both of the eigenvalues are both negative. The critical point is a stable 

improper node. 

- unstable whenever one or both of the eigenvalues are positive. The critical point is a 

saddle. 

(ii) If the eigenvalues of the linearized matrix are complex, then the solution for the system will 

be: 

- asymptotically stable if the real part is negative. The critical point is a stable spiral or 

focus. 

- stable if the real part equals to zero. The critical point is a center.  

- unstable if the real part is positive. The critical point is a unstable spiral or focus. 

(iii) If the eigenvalues of the linearized matrix are real and equal, then the solution for the system 

will be: 

- asymptotically stable if the eigenvalue is negative.  

- unstable the eigenvalue greater than and equals to zero. 
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The critical point is a proper node if the eigenvalues have two linearly independent 

eigenvectors, and a degenerate or inflected node if the eigenvalues have one corresponding 

eigenvector. 

    

Therefore, the stability and behavior of the critical points in this case can be determined as follows: 

For       with eigenvalues:   
  

               

 
, 

- if    ,   
     , which are purely imaginary, then       is a center, which means the 

trajectories in phase plane go around      .  

- if      ,   
  are complex with negative real part, then       is a stable spiral or focus, 

which means the trajectories are spiraling into      .  

- if    ,   
  are distinct real and negative, then       is an stable improper node, which means 

the trajectories are sinking into      . The directions of the trajectories depend on the 

eigenvector, i.e. they sink into       from the directions of eigenvector that corresponds to the 

smallest eigenvector.       

For        with eigenvalues:   
    and   

      , since    ,   
  will always be negative, 

then        will always be a saddle. 

 

It is clear that there exists an invariant curve in the trajectories between the critical points. For 

example for    , the   -plane can be seen in picture 1.  As it is shown in the picture, there exists 

exactly one invariant curve from        to      . The other curves of trajectories can be assumed 

as a translation in the parameter  . Let            be such a trajectory, then 

                                                                             (3.4) 

exists and the curve of each trajectory lines up independently, thus   determines       uniquely.  

 
Picture 1. Trajectories in qp-plane 

 

 

q ' = p             

p ' = 2 cos(q) q - p
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4. Conclusion 

Study of rotationally symmetric maps with finite energy by considering map         

that can be written in the form 

                                                                   

can be reduced into a damped pendulum equation system as follows. 

                                      
  

  
   

 

                   

The solution of this system for     explicitly shows all smooth rotationally symmetric harmonic 

maps with finite energy. Whereas for    , the result shows that they are directly related to the 

trajectories of the equation connecting the critical points       and       with    

 
    in the phase 

plane             .  

Consider the critical points in      -plane:              and      . For    , the critical points 

can be restricted to        and       corresponding to the northpole and the equator and their 

connecting trajectories. 

Therefore, the stability and behavior of the critical points in this case can be determined as follows: 

For      , 

- if    ,       is a center, which means the trajectories in phase plane go around      .  

- if      ,       is a stable spiral or focus, which means the trajectories are spiraling into 
     .  

- if    ,       is an stable improper node, which means the trajectories are sinking into      . 

The directions of the trajectories depend on the eigenvector, i.e. they sink into       from the 

directions of eigenvector that corresponds to the smallest eigenvector.       

For       , it will always be a saddle. 
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