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Abstract 

In the analysis of warranty, renewal functions are important in acquiring the expected number of failures of a 

nonrepairable component in a time interval. It is very difficult and complicated -if at all possible- to obtain a renewal 

function analytically. This paper proposes a numerical integration method for estimating renewal functions in the 

terms of renewal integral equations. The estimation is done through the Mean Value Theorem for Integrals (MeVTI) 

method after modifying the variable of the renewal integral equations. The accuracy of the estimation is measured by 

its comparison against the existing analytical approach of renewal functions, those are for Exponential, Erlang, 

Gamma, and Normal baseline failure distributions. The estimation of the renewal function for a Weibull baseline 

failure distribution as the results of the method is compared to that of the well-known numerical integration 

approaches, the Riemann-Stieljies and cubic spline methods.  

Keywords : Mean Value Theorem for Integrals, Renewal Functions, Renewal Integral Equations. 

 

 

Estimasi Fungsi Pembaruan Menggunakan Metode 

Mean Value Theorem for Integrals (MeVTI) 
 

Abstrak 

Dalam bidang analisis garansi, fungsi pembaruan berperan penting dalam perolehan ekspektasi banyak kegagalan 

suatu ‘komponen yang tak dapat diperbaiki’ di suatu selang waktu. Jika dimungkinkan, sangatlah sulit dan rumit 

memperoleh suatu fungsi pembaruan secara analitik. Makalah ini mengusulkan suatu metode integrasi numerik untuk 

mengestimasi fungsi pembaruan dalam bentuk persamaan integral pembaruan. Estimasi fungsi pembaruan dilakukan 

melalui metode Mean Value Theorem for Integrals (MeVTI) setelah memodifikasi peubah dalam persamaan integral 

pembaruan. Keakuratan estimasi tersebut diukur berdasarkan perbandingannya terhadap pendekatan analitik fungsi 

pembaruan untuk distribusi kegagalan dasar Eksponensial, Erlang, Gamma, dan Normal. Estimasi fungsi pembaruan 

untuk distribusi kegagalan dasar Weibull melalui metode MeVTI juga dilakukan dan hasilnya dibandingkan dengan 

hasil estimasi melalui metode Riemann-Stieljies dan spline kubik.  

Kata kunci : Fungsi Pembaruan, Mean Value Theorem for Integrals, Persamaan Integral Pembaruan. 

 

 

 

1. Introduction 

In providing a warranty, one important thing that affects warranty cost of a component is the expected 

number of failures of the component in a time interval. For a special case, number of failures of a 

nonrepairable component (by assuming the replacement of the failed component with brand new one in 

negligibly short time) in a time interval follows renewal process, so the expected is obtained by renewal 

functions (RNFs). RNFs have an important role in analysis of warranty [1, 2]. Maghsoodlo and Helvaci [2] 

state that “renewal functions have wide variety of applications in decision making such as inventory theory, 

supply chain planning, continuous sampling plans, insurance application, and sequential analysis”. 

Obtaining a RNF analytically is very difficult and complicated for most baseline failure distributions 

(BFDs) such as Weibull BFD, the BFD that is often used in analysis of warranty [2, 3]. Thus, obtaining the 

expected number of failures of a nonrepairable component in a time interval needs a long way and time, or 

maybe there is no solution to obtain it analytically. Therefore, development of computational techniques 

and approximations for RNFs has attracted many researchers [4]. 

Beside the analytical approach of RNFs, there are still four alternate approaches. The first approach 

is approximations those have three kind of approximations. The first approximation is asymptotic 

approximations. One of the asymptotic approximations is given by Täcklind [5] which a RNF involves the 
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first and second raw moments (𝜇1′ and 𝜇2′) of a BFD. Moreover, Ross [6] and Cinlar [7] give an asymptotic 

approximation of a RNF which involves mean and variance (𝜇 and 𝜎2) of a BFD. However, the asymptotic 

approximations are not accurate or useful for small values of 𝑡 [8]. The second approximation is developed 

by using power series expansion. The approximation is often applied to obtain a RNF for a Weibull BFD. 

Smith and Leadbetter [9] develope a method to compute the RNF by using power series expansion of 𝑡𝛽 

where 𝛽 is the shape parameter of the Weibull. Moreover, a method using the infinite series of appropriate 

Poisonian functions of 𝑡𝛽 is proposed by Lomnicki [10]. The third approximation is proposed by many 

researchers such as Bartholomew [11], Ozbaykal [12], and Deligönül [13] in which the RNFs (in the terms 

of renewal integral equations) are derived to other integral forms involving mean of BFDs. 

The second approach of RNFs is bounds approach that can be found in such as Barlow [14], Barlow 

and Proschan [15], Marshall [16], Ayhan et al. [17], Leadbetter [18], Ozbaykal [12], Ran et al. [19], Politis 

and Koutras [20], and Xie [21]. The third approach of RNFs is based on simulations. One of the simulations 

is proposed by Blischke and Murthy [1]. The simulations based on Monte Carlo (MC) method are proposed 

by Brown et al. [22], and Kaminskiy and Krivtsov [23] who apply it on G-renewal process. 

The last approach of RNFs is obtaining RNFs through numerical integration method. The method is 

applied in the integral equation forms of RNFs, called the renewal integral equations (RNIEs). The one 

numerical integration method is done through cubic spline method that is proposed by Cleroux and 

McConalogue [24], and then it is developed by Baxter et al. [25] for Weibull, Gamma, Lognormal, 

truncated Normal, and inverse Gaussian BFD. Deligönül and Bilgen [26] propose a method using cubic 

spline and Galerkin technique to obtain RNFs. The well-known numerical integration method is Riemann-

Stieljies (RS) method that is proposed by Min Xie [8]. He states that “the method is surprisingly accurate 

(no need for small step length), fast (10-fold time saving), and simple (20-line BASIC programme)” [8]. 

Moreover, Elsayed [27] and Maghsoodloo-Helvaci [2] propose Mean Value Theorem for Integrals 

(MeVTI) method to obtain RNFs. However, the MeVTI method consumes more computational time 

eventhough the estimation of RNF at 𝑡 is accurate for sufficiently small subintervals [2]. 

This paper proposes a numerical integration method for estimating RNFs which is expressed as the 

solution of RNIEs through the same method that is proposed by Maghsoodloo and Helvaci [2], MeVTI 

method. However, we modify the variable of RNIEs then we apply MeVTI on it into a new numerical 

expression that is different from what they have. Maghsoodloo and Helvaci [2] compute RNFs backward 

recursively. We do it forward recursively, and we try to obtain an effective and efficient Matlab code 

programme to minimize computational time of MeVTI method. The effectiveness of the method is to be 

our purpose based on the accuracy of the estimation compared against the existing analytical approach of 

RNFs, those are for Exponential, Erlang, Gamma, and Normal baseline failure distributions. We also 

estimate RNF for a Weibull BFD using the method, then we compare the estimation of the RNF to that of 

the RS and cubic spline methods. 

 

2. Preliminaries 

Suppose 𝑇𝑛 denotes the time of the 𝑛-th component failure for 𝑛 = 1, 2, 3, …, and 𝑋𝑛 denotes time 

between the 𝑛-th and the (𝑛 − 1)-th component failure or 𝑋𝑛 = 𝑇𝑛 − 𝑇𝑛−1 where 𝑇0 = 0.  It is clear that 

𝑇𝑛 and 𝑋𝑛 are nonnegative random variables (RVs) and 𝑇𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1 . The 𝑋𝑛 is also known as interfailure 

time RV. Then, 𝑁(𝑡) is one-dimensional counting process or nonnegative RV denoting number of failures 

in time interval [0, 𝑡). The 𝑇𝑛, 𝑋𝑛, and 𝑁(𝑡) have same events or sets of equivalent times those are 

{𝑡 | 𝑁1(𝑡) ≥ 𝑛} ≡ {𝑡 | 𝑇𝑛 ≤ 𝑡} ≡ {𝑡 | ∑ 𝑋𝑖
𝑛
𝑖=1 ≤ 𝑡}  

We assume all failed components are replaced by new and identical components, and time to replace is 

short so that can be negligible. Suppose 𝑇1 (or 𝑋1) has cumulative distribution function (cdf) 𝐹(𝑡), we 

consider 𝑋𝑖, for 𝑖 = 1, 2, 3, … , 𝑛, independently and identically distributed (i.i.d.) to the 𝑇1 that has 𝐹(𝑡). 

Then 𝑇𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1  has 𝐹(𝑛)(𝑡), called 𝑛-fold convolution of 𝐹(𝑡) with itself. Therefore, probability of 

𝑁(𝑡) = 𝑛 is obtained by 

𝑃𝑟[𝑁(𝑡) = 𝑛] = 𝑃𝑟[𝑁(𝑡) ≥ 𝑛] − 𝑃𝑟[𝑁(𝑡) ≥ 𝑛 + 1] = 𝑃𝑟[𝑇𝑛 ≤ 𝑡] − 𝑃𝑟[𝑇𝑛 ≤ 𝑡] = 𝐹(𝑛)(𝑡) − 𝐹(𝑛+1)(𝑡) 

So the expected number of failures in time interval [0, 𝑡) is given by 

𝑀(𝑡) = 𝐸[𝑁(𝑡)] = ∑ 𝑛𝑃𝑟[𝑁(𝑡) = 𝑛]

∞

𝑛=1

= ∑ 𝐹(𝑛)(𝑡)

∞

𝑛=1

                             (1) 

There are two forms of RNIEs as the solutions of (1), those are 
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𝑀(𝑡) = 𝐹(𝑡) + ∫ 𝑀(𝑡 − 𝑢)𝑑𝐹(𝑢)

𝑡

0

                                            (2a) 

𝑀(𝑡) = 𝐹(𝑡) + ∫ 𝐹(𝑡 − 𝑢)𝑑𝑀(𝑢)

𝑡

0

                                            (2b) 

We see in both side of (2a) and (2b) have unknown function 𝑀. That is one of the reason why a 

RNF is difficult and complicated to obtain it analytically. Sometimes, a RNF can be obtained analytically 

through (1) for several BFD such as Exponential, Normal, and Gamma BFD [2]. Moreover, a RNF which 

is expressed as in (2a) and (2b) can be solved with Laplace transform such as RNF for a Erlang BFD with 

𝑘-stages [1]. In Section 3, we will explain the existing analytical approach of RNFs. 

Min Xie [8] estimates (2b) by using the RS method. Maghsoodlo and Helvaci [2] estimate (2a) by 

using the MeVTI method. We develope the MeVTI method where we will explain in Section 4. 

 

3. The Existing Analytical Approaches of Renewal Functions 

In this time, we explain analytical approach of RNFs those are the RNF for a Exponential, Erlang, 

Gamma, and Normal BFDs. 

3.1. The Renewal Function for a Exponential BFD 

The probability density function (pdf) of Exponential distribution with parameter 𝜆 is given by 

𝑓(𝑡) = 𝜆𝑒=𝜆𝑡, and 𝑛-fold convolution of 𝑓(𝑡) itself is given by 𝑓(𝑛)(𝑡) = 𝜆(𝜆𝑡)𝑛−1𝑒−𝜆𝑡 Γ(𝑛)⁄ . Since 

𝐹(𝑛)(𝑡) = ∫ 𝑓(𝑛)(𝑢)𝑑𝑢
𝑡

0
, by using (1), the RNF is obtained by 

𝑀(𝑡) = ∑ 𝐹(𝑛)(𝑡)

∞

𝑛=1

= ∑ ∫ 𝜆(𝜆𝑢)𝑛−1𝑒−𝜆𝑢 Γ(𝑛)⁄ 𝑑𝑢
𝑡

0

∞

𝑛=1

 

                                     = ∫ 𝜆𝑒−𝜆𝑢 [∑((𝜆𝑢)𝑛−1 (𝑛 − 1)!⁄ )

∞

𝑛=1

] 𝑑𝑢
𝑡

0

= ∫ 𝜆𝑑𝑢
𝑡

0

= 𝜆𝑡 

The RNF for a Exponential BFD with parameter 𝜆 is given b,  𝑀(𝑡) = 𝜆𝑡                                                      (3) 

This case where interfailure time RVs have an Exponential distribution with 𝜆 constant rate is also known 

as Homogenuous Poisson Process. 

3.2. The Renewal Function for a Erlang BFD with 𝒌-Stages 

Erlang distribution with 𝑘-stages (parameter 𝜆) has cumulative distribution function 𝐹(𝑡) = 1 −

𝑒−𝜆𝑡{∑ (𝜆𝑡)𝑗 𝑗!⁄𝑘−1
𝑗=0 }. Through Laplace transform (the derivation can be found in Barlow and Proschan 

[15]), the RNF is given by 

𝑀(𝑡) =
𝜆𝑡

𝑘
+

1

𝑘
∑

𝜃𝑗 {1 − 𝑒−𝜆𝑡(1−𝜃𝑗)}

1 − 𝜃𝑗

𝑘−1

𝑗=1

                                        (4𝑎) 

where 𝜃 = 𝑒𝑥𝑝(2𝜋𝑖 𝑘⁄ ) with 𝑖 = √−1. For 𝑘 = 2 stages, we have 

𝑀(𝑡) =
2𝜆𝑡 − 1 + 𝑒−2𝜆𝑡

4
                                                     (4𝑏) 

3.3. The Renewal Function for a Gamma BFD 

The 𝑛-fold convolution of 𝐹(𝑡) itself, where 𝐹(𝑡) is Gamma cdf with parameters 𝛼 and 𝜆, is given 

by 𝐹(𝑛)(𝑡) = ∫ 𝜆(𝜆𝑢)𝑛𝛼−1𝑒−𝜆𝑢 Γ(𝑛𝛼)⁄ 𝑑𝑢
𝑡

0
 [2]. By using (1), the RNF is obtained by 𝑀(𝑡) =

∑ ∫ 𝜆(𝜆𝑢)𝑛𝛼−1𝑒−𝜆𝑢 Γ(𝑛𝛼)⁄ 𝑑𝑢
𝑡

0
∞
𝑛=1 . By modifying variable 𝑣 = 𝜆𝑢 [28], 

𝑀(𝑡) = ∑ ∫ 𝑣𝑛𝛼−1𝑒−𝑣 Γ(𝑛𝛼)⁄ 𝑑𝑣
𝜆𝑡

0

∞

𝑛=1

= ∑ Γ(𝑛𝛼; 𝜆𝑡)

∞

𝑛=1

                             (5) 

where Γ(𝑛𝛼; 𝜆𝑡) is incomplete Gamma function (can be seen in Matlab’s function browser: gammainc). 
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3.4. The Renewal Function for a Normal BFD 

We know that a RV of the Normal distribution has support in (−∞, ∞). If interfailure time RVs, 𝑋𝑖 

where 𝑖 = 1, 2, 3, … , 𝑛, are NID (Normal and Independently Distributed) with mean 𝜇 and variance 𝜎2, 

then it cannot be applied in reliability analysis (since interfailure times must be nonnegative) at least if 

coefficient of variation is less than or equal to 15%, 𝐶𝑉 = 𝜎 𝜋⁄ ≤ 15%. That will make us to consider that 

the interfailure times can be applied since the probability interfailure times below zero is less than 10−10. 

If the 𝐶𝑉 is not sufficiently small, then the truncated Normal distribution can qualify as a baseline failure 

distribution [2]. 

From what we learn in statistical theory, if 𝑋𝑖, 𝑖 = 1, 2, 3, … , 𝑛, are NID(𝜇, 𝜎2), then 𝑇𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1  

has 𝑁(𝑛𝜇, 𝑛𝜎2) distribution which the cdf of 𝑁(𝑛𝜇, 𝑛𝜎2) can be derived to the standardized Normal 

Deviate 𝐹(𝑛)(𝑡) = Φ((𝑡 − 𝑛𝜇) (𝜎√𝑛)⁄ ). Thus, by using (1), the RNF for a Normal BFD is given by 

𝑀(𝑡) = ∑ 𝐹(𝑛)(𝑡)

∞

𝑛=1

= ∑ Φ (
𝑡 − 𝑛𝜇

𝜎√𝑛
)

∞

𝑛=1

                                           (6) 

 

4. The Numerical Integration Methods for Estimating Renewal Functions 

Two methods those we discuss in this paper are Riemann-Stieljies (RS) method proposed by Min 

Xie [8] and Mean Value Theorem for Integrals (MeVTI) method proposed by Maghsoodloo and Helvaci 

[2]. The cubic spline method can be found in Cleroux and McConalogue [24], Baxter et all [25], and 

Deligönül and Bilgen [26]. In this section, we also explain our work in developing MeVTI method. 

4.1. The Riemann-Stieljies Method 

Min Xie [8] uses RS method for estimating the RNIEs in (2b). Min Xie [8] claims the method is 

accurate, fast, and simple. He also tells this method does not need equal length of subintervals. 

Based on RS theorem, for 𝑛 sub-interval 𝑡0 = 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 = 𝑡, renewal function at 𝑡𝑖, 

𝑀(𝑡𝑖), can be estimated by 

𝑀(𝑡𝑖) = 𝐹(𝑡𝑖) + ∑ 𝐹 (𝑡𝑖 − 𝑡
𝑖−

1

2

) [𝑀(𝑡𝑖) − 𝑀(𝑡𝑖−1)]

𝑖

𝑗=1

                              (7) 

Min Xie [8] gets a set of linear equations from (7). Then he solve and translate it into 20-line BASIC 

programme. 

4.2. The Mean Value Theorem for Integrals (MeVTI) Method by Maghsoodloo-Helvaci 

Maghsoodloo and Helvaci [2] propose MeVTI method for estimating the RNIEs in (2a). They note 

this method is accurate for sufficiently small subintervals. However, this method consumes more 

computational time. They also tell that it needs to discretize a time interval into 𝑛 subinterval those have 

equal length. 

Based on MeVTI, for 𝑛 sub-interval 𝑡0 = 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 = 𝑡, renewal function at 𝑡𝑖 = 𝑖∆𝑡 

where ∆𝑡 = 𝑡 𝑛⁄ , 𝑀(𝑡𝑖), can be estimated by 

𝑀(𝑡𝑖) = ∑ (1 + 𝑀(𝑡𝑖 − 𝑡𝑗)) (𝐹(𝑡𝑗) − 𝐹(𝑡𝑗−1))

𝑖

𝑗=1

                                 (8) 

They estimate 𝑀(𝑡𝑖) backward recursively which starts from 𝑗 = 𝑖, then at 𝑗 = 𝑖 − 1, 𝑗 = 𝑖 − 2, ..., 𝑗 = 1. 

After all, they sum (1 + 𝑀(𝑡𝑖 − 𝑡𝑗)) (𝐹(𝑡𝑗) − 𝐹(𝑡𝑗−1)) for 𝑗 = 1, 2, … 𝑖. What they do seems complicated 

and has a long time computational. 

4.3. The Modified MeVTI method 

We develop MeVTI method which has different way from what Maghsoodloo and Helvaci [2] do. 

First, we derive (2a) into 

𝑀(𝑡) = 𝐹(𝑡) + ∫ 𝑀(𝑡 − 𝑢)𝑑𝐹(𝑢)

𝑡

0

= ∫ 𝑑𝐹(𝑢)

𝑡

0

+ ∫ 𝑀(𝑡 − 𝑢)𝑑𝐹(𝑢)

𝑡

0

 



JdC, Vol. 5, No. 2, September 2016     115 
 

= ∫[1 + 𝑀(𝑡 − 𝑢)]𝑑𝐹(𝑢)

𝑡

0

                                                                                  (9) 

We modify variable in (9) that is 𝑢 = 𝑡 − 𝑣 ⟹ 𝑑𝑢 = −𝑑𝑣. Thus, 𝐹(𝑢) = 𝐹(𝑡 − 𝑣) ⟹ 𝐷𝑣[𝐹(𝑡 − 𝑣)] =
−𝑓(𝑡 − 𝑣). It is clear that 𝑑𝐹(𝑢) = 𝑓(𝑢)𝑑𝑢 = −𝑓(𝑡 − 𝑣)𝑑𝑣 = 𝑑𝐹(𝑡 − 𝑣). When 𝑢 = 0 ⟹ 𝑣 = 𝑡 and 

𝑢 → 𝑡 ⟹ 𝑣 → 0. Then, 

𝑀(𝑡) = ∫[1 + 𝑀(𝑣)]𝑑𝐹(𝑡 − 𝑣)

0

𝑡

= − ∫[1 + 𝑀(𝑣)]𝑑𝐹(𝑡 − 𝑣)

𝑡

0

                   (10) 

With dividing [0, 𝑡) into 𝑛 subinterval those have equal length, 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 where 𝑡𝑖 = 𝑖∆𝑡 and 

∆𝑡 = 𝑡 𝑛⁄ , equation (10) becomes 

𝑀(𝑡) = − [ ∫ [1 + 𝑀(𝑣)]𝑑𝐹(𝑡 − 𝑣)

𝑡1

𝑡0

+ ∫ [1 + 𝑀(𝑣)]𝑑𝐹(𝑡 − 𝑣)

𝑡2

𝑡1

+ ⋯

+ ∫ [1 + 𝑀(𝑣)]𝑑𝐹(𝑡 − 𝑣)

𝑡𝑛−1

𝑡𝑛−2

+ ∫ [1 + 𝑀(𝑣)]𝑑𝐹(𝑡 − 𝑣)

𝑡

𝑡𝑛−1

] 

= ∑ [− ∫ [1 + 𝑀(𝑣)]𝑑𝐹(𝑡 − 𝑣)

𝑡𝑖

𝑡𝑖−1

]

𝑛

𝑖=1

                                                                      (11) 

We apply MeVTI at the left point of all subintervals, thus 

𝑀(𝑡) = ∑ [[1 + 𝑀(𝑡𝑖−1)] (− ∫ 𝑑𝐹(𝑡 − 𝑣)

𝑡𝑖

𝑡𝑖−1

)]

𝑛

𝑖=1

 

= ∑[1 + 𝑀(𝑡𝑖−1)][𝐹(𝑡 − 𝑡𝑖−1) − 𝐹(𝑡 − 𝑡𝑖)]

𝑛

𝑖=1

                          (12) 

The estimation of 𝑀(𝑡𝑖) in (12) can be obtained forward recursively through 

𝑀(𝑡𝑖) = ∑[1 + 𝑀(𝑡𝑗−1)][𝐹(𝑡 − 𝑡𝑗−1) − 𝐹(𝑡 − 𝑡𝑗)]

𝑖

𝑗=1

                           (13) 

for 𝑖 = 1, 2, 3, … , 𝑛, where 𝑀(0) = 𝐹(0) = 0 and 𝑀(𝑡1) = 𝐹(𝑡1). 

We give algorithm of our modified MeVTI method. One of Matlab code programmes is also given. 

The algorithm and code are made by translating (13) into operation of vectors. Matlab programme has an 

important role in helping our computational based on operation of vectors. We use Matlab R2012a. Our 

device is a laptop which has quad core processor with maximum clock speed @ 1.7 Ghz and 2 Gb RAM. 

4.4. Algorithm of the Modified MeVTI Method 

1. Initialization 

- provide 𝑡, 𝑛, ∆𝑡 = 𝑡 𝑛⁄ , and 𝑘 = 3, 

- vector 𝑻(𝑛+1)×1 = [𝑇𝑖]𝑖=1
𝑛+1, where 𝑇𝑖 = (𝑖 − 1)∆𝑡, 

- vector 𝑴1×(𝑛+1) = [0]𝑖=1
𝑛+1, then fill 𝑀2 = 𝐹(𝑇2). 

2. Process 

a. If 𝑘 > 𝑛 + 1, go to 3. If else, go to 2.b, 

b. calculate vector 𝒖 = 𝑇𝑘 − [𝑇𝑖]𝑖=1
𝑘−1 and 𝑣 = 𝑇𝑘 − [𝑇𝑖]𝑖=2

𝑘 , 

c. calculate vector 𝑮 = 𝐹(𝒖) − 𝐹(𝒗), 

d. calculate 𝑘-th entry of vector 𝑴, 𝑀𝑘 = (1 + [𝑀]𝑖=1
𝑘−1) ∙ 𝑮, 

e. calculate 𝑘 = 𝑘 + 1, go to 2.a. 

3. Output : the estimation of RNF at 𝑡, 𝑀𝑛+1. 



116 Sasongko, Mahatma – The Estimation of Renewal Functions Using  …………………… 

This following code programme estimates renewal function for a Exponential BFD with 

parameter 𝜆 = 0.001 (𝜇 = 1 𝜆⁄ = 1000) at 𝑡 = 10000 for 𝑛 = 100. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tic 

t = 10000; n = 100; dt = t/n; T = [0:dt:t]'; 

M = zeros(1,n+1); M(2) = expcdf(T(2),1000); 

for k = 3:n+1 

    u = T(k)-T(1:k-1); v = T(k)-T(2:k); 

    G = expcdf(u,1000)-expcdf(v,1000); 

    M(k) = (1+M(1:k-1))*G; 

end 

M = M(n+1) 

toc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

5. Results and Discussions 

This section has five parts of discussion. The first four parts discuss about the estimation of four 

RNFs (the RNF for a Exponential, Erlang, Gamma, and Normal BFDs) using our modified MeVTI method. 

We compare the estimation to their analytical approaches. The last part discuss the estimation of the RNF 

for a Weibull BFD using our modified MeVTI method and its comparison against the estimation of the 

RNF using RS and cubic spline methods.  

5.1. The Estimation of the RNF for a Exponential BFD 

We estimate the RNF for Exponential BFD with 𝜆 = 0.001 at 𝑡 = 10000 as Maghsoodloo and 

Helvaci [2] do. Based on (3), the exact value of the RNF is 𝑀(10000) = (0.001)(10000) = 10. Tabel 1 

gives the results.  

Tabel 1. Comparison of MeVTI Methods with Exact Value of 𝑀(𝑡) for the Exponential BFD 

∆𝒕 

Exact 

Value of 

𝑴(𝒕) 

Maghsoodlo-Helvaci’s MeVTI 

Method 
Our Modified MeVTI Method 

𝑀(𝑡) 
Elapsed time 

(sec) 
𝑀(𝑡) 

Relative 

error 

Elapsed time 

(sec) 

250 10 8.8479686771438 21.066944 8.847968677143806 –11.5203% 0.001378 

200 10 9.0634623461009 32.320588 9.063462346100907 –9.3654% 0.002120 

100 10 9.5162581964040 65.112829 9.516258196404042 –4.8374% 0.004000 

50 10 9.7541150998572 82.738732 9.754115099857199 –2.4589% 0.009976 

25 10 9.8760351886669 2018.707614 9.876035188666933 –1.2397% 0.021733 

10 10 9.9501662508319 40238.617140 9.950166250831945 –0.4983% 0.078848 

Based on Table 1, our modified MeVTI method gives the same results with the results of 

Maghsoodlo-Helvaci’s MeVTI method [2] until 13 numbers behind comma. Thus, we give the relative 

error of the both method to the exact value of 𝑀(𝑡) at 6th column. The computational time through our 

algorithm and code programme is incredibly fast. It seems that the algorithm and code programme are more 

efficient. According to these results, we can say that (8) is equal to (13). 

For smaller subinterval, we have the estimation of 𝑀(𝑡) using our modified MeVTI method in Table 

2. 

Tabel 2. The RNF for the Exponential BFD using Our Modified MeVTI Method for Smaller Subinterval 

∆𝒕 
Exact Value of 

𝑴(𝒕) 

Our Modified MeVTI Method 

𝑀(𝑡) Relative error Elapsed time (sec) 

1 10 9.995001666250083 –0.0500% 5.469037 

0.5 10 9.997500416614589 –0.0250% 19.068695 

0.2 10 9.999000066663333 –0. 0100% 108.412236 

0.1 10 9.999500016666252 –0.0050% 429.085511 

For  [0, 10000) divided into 100000 subintervals (∆𝑡 = 0.1), the elapsed time is 8 minutes. However, for 

∆t = 0.2 or 50000 subintervals, the elapsed time is less than 2 minutes. It shows that our algorithm and 
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code programme are still efficient in sufficiently small subintervals or until 50000 subintervals. Since the  

relative error goes to 0% as ∆𝑡 goes to 0, our algorithm and code programme are also effective. 

5.2. The Estimation of the RNF for a Erlang BFD with 2-Stages 

In this part, we estimate the RNF for Erlang BFD with 2 stages as seen in (4𝑏) where 𝜆 = 1 at 𝑡 =
5. Analytically, The RNF is 𝑀(5) = (10 − 1 + 𝑒−10) 4⁄ = 2.250011. 

Tabel 3. The Estimation of the RNF for the Erlang BFD with 2 Stages 

∆𝒕 

Exact Value 

of 

𝑴(𝒕) 

Our Modified MeVTI Method 

𝑀(𝑡) Relative error Elapsed time (sec) 

1 2.250011 1.862547 –17.2205% 0.002039 

0.5 2.250011 2.032597 –9.6628% 0.004033 

0.05 2.250011 2.225382 –1.0946% 0.067058 

0.005 2.250011 2.247514 –0.1109% 0.090879 

0.001 2.250011 2.249511 –0.0222% 1.605724 

0.0005 2.250011 2.249761 –0.0111% 6.192392 

0.0001 2.250011 2.249961 –0.0022% 141.107192 

Based on Table 3, the  relative error goes to 0% as ∆𝑡 goes to 0. For 50000 (∆𝑡 = 0.0001), the 

computational time is less than 3 minutes. 

5.3. The Estimation of the RNF for a Normal BFD 

Here we estimate the RNF for Normal BFD with 𝜇 = 15 and 𝜎2 = 2.25 at 𝑡 = 42. Thus, 𝐶𝑉 =
𝜎 𝜋⁄ = (1.5) (15)⁄ = 10%. Based on (6) and [2], 𝑀(42) = 2.124107.  

Tabel 4. The Estimation of the RNF for the Normal BFD 

∆𝒕 
Exact Value of 

𝑴(𝒕) 

Our Modified MeVTI Method 

𝑀(𝑡) Relative error Elapsed time (sec) 

1 2.124107 2.064140 –2.8231% 0.004438 

0.1 2.124107 2.116426 –0.3616% 0.076581 

0.01 2.124107 2.123320 –0.0371% 2.632645 

0.001 2.124107 2.124028 –0.0037% 177.208774 

Based on Table 3, the  relative error goes to 0% as ∆𝑡 goes to 0. For 42000 (∆𝑡 = 0.001), the 

computational time is less than 3 minutes. 

5.4. The Estimation of the RNF for a Gamma BFD 

The estimation of the RNF for Gamma BFD with 𝛼 = 2 and 𝜆 = 1 at varies value of 𝑡 through 

approximation approach by Bartholomew [11] 𝑀𝑏(𝑡), Ozbaykal [12] 𝑀𝑜(𝑡), Deligönül [13] 𝑀𝑑𝑒(𝑡), and 

analytical approach that is given by Blischke and Murthy [1], 𝑀(𝑡) = (𝑡 − 1 + 𝑒−𝑡) 4⁄ , and the estimation 

of the RNF through our modified MeVTI method (∆𝑡 = 0.001) are given in Table 5. 

Tabel 5. The Estimation of the RNF for the Gamma BFD through Several Approaches 

𝒕 

Bartholomew Ozbaykal Deligönül 
Exact Value 

of 𝑴(𝒕) 

Our Modified MeVTI Method 

𝑴𝒃(𝒕) 𝑴𝒐(𝒕) 𝑴𝒅𝒆(𝒕) 𝑴(𝒕) Relative 

error 

Elapsed time 

(sec) 

0.2 0.01760 0.09562 0.01760 0.01758 0.01758 –0.0000% 0.032704 

0.4 0.06262 0.18461 0.06261 0.06233 0.06233 –0.0000% 0.079816 

0.6 0.12640 0.26952 0.12631 0.12530 0.12529 –0.0080% 0.162975 

0.8 0.20313 0.35520 0.20285 0.20047 0.20045 –0.0100% 0.287436 

1.0 0.28880 0.43394 0.28814 0.28383 0.28380 –0.0106% 0.447523 

1.2 0.38067 0.51566 0.37937 0.37268 0.37263 –0.0134% 0.657841 

1.4 0.47678 0.59796 0.47454 0.46520 0.46513 –0.0150% 0.885471 

1.6 0.57575 0.68123 0.57225 0.56019 0.56010 –0.0161% 1.176094 
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𝒕 

Bartholomew Ozbaykal Deligönül 
Exact Value 

of 𝑴(𝒕) 

Our Modified MeVTI Method 

𝑴𝒃(𝒕) 𝑴𝒐(𝒕) 𝑴𝒅𝒆(𝒕) 𝑴(𝒕) Relative 

error 

Elapsed time 

(sec) 

1.8 0.67663 0.76571 0.67151 0.65683 0.65672 –0.0167% 1.530336 

2.0 0.77871 0.85150 0.77166 0.75458 0.75445 –0.0172% 1.912525 

3.0 1.29458 1.29979 1.27411 1.25062 1.25037 –0.0200% 4.410673 

4.0 1.80740 1.77289 1.77143 1.75008 1.74971 –0.0211% 7.406144 

5.0 2.31475 2.26011 2.26546 2.25001 2.24951 –0.0222% 11.124587 

8.0 3.82099 3.75075 3.74982 3.75000 3.74913 –0.0231% 24.634114 

For varies value of 𝑡, the relative errors have mean –0.0150% with the computational time less than 1 

minute. 

5.5. The Estimation of the RNF for a Weibull BFD 

We also estimate the RNF for unknown convolution that is the RNF for the Weibull BFD with 𝜆 = 1 

and 𝛽 = 0.5 at varies value of 𝑡. The results is also compared to the results through cubic spline method by 

Baxter et al. (can be seen in [25]) and RS method by Min Xie. The interval [0, 𝑡) is divided into 𝑛 

subintervals with ∆𝑡 = 0.001. The comparison can be seen in Table 6. 

Tabel 6. The Estimation of the RNF for the Weibull BFD through Several Numerical Approaches 

𝒕 

Cubic Spline 

Method 

 Riemann Stieljies Method  Our Modified MeVTI 

Method 

𝑀(𝑡)  𝑀(𝑡) Elapsed time (sec)  𝑀(𝑡) Elapsed time (sec) 

1 1.3077  1.3080 0.023169  1.3072 0.336874 

2 2.0478  2.0476 0.074976  2.0466 0.496255 

3 2.7018  2.7014 0.167590  2.7003 0.750203 

4 3.3141  3.3134 0.297046  3.3120 1.382846 

5 3.9010  3.9001 0.462873  3.8987 2.063057 

Based on Table 5, for each numerical approaches, the results are not quite different. However, we 

can not determine which method is the best since we do not have the exact value of the RNF for the Weibull 

BFD. We are only capable to compare the computational time between our modified MeVTI method and 

RS method. The RS method by Min Xie is more efficient than our modified MeVTI method although we 

ever make our algorithm and code programme with single global looping because of operation of vectors. 

6. Conclusions 

We provided our modified MeVTI method to estimate the RNFs in the terms of renewal integral 

equations (RNIEs) based on developing the MeVTI method proposed by Maghsoodloo and Helvaci. The 

development is done on (2a) by modifying its variable. We got that (8) is equal to (13). 

We also provided algorithm and code programme for our modified MeVTI method. The algorithm 

and code programme are effective and efficient based on our laptop specification that we have. We applied 

our modified MeVTI method to estimate the RNFs for Exponential, Erlang, Normal, and Gamma BFD. We 

got that our modified MeVTI method gives accurate results for sufficiently small subintervals and has 

efficient computational time that calculates values at 50000 subintervals less than 3 minutes.  

We also applied our modified MeVTI method to estimate the RNF for unknown convolution that is 

for Weibull BFD. The estimation of the RNF is not quite different to the estimation of the RNF using RS 

and cubic spline methods. However, the computational time of the RS method proposed by Min Xie is more 

efficient than the computational time of our modified MeVTI method.  
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