
Quantum Guarded-Command Language (qGCL) for Maximum Value

Aisya M. Suratno Putri1, Jullia Titaley 2, Benny Pinontoan3*

1,2,3Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Universitas Sam Ratulangi Manado
*corresponding author email: bpinonto@yahoo.com

Abstract

On a classical computer or a binary computer, calculations are done simultaneously so as to produce the

equations and algorithms. The result of this research shows that to determined maximum value specified in the

algorithm using quantum Guarded-Command Language (qGCl) in quantum computer. Initially determine of

maximum value was construct in Djikstra’s Guarded-Command Language (GCL) which is then implemented on

Zuliani’s probability Guarded-Command Language (pGCL) furthermore applying to quantum Guarded-

Command Language (qGCL) for last result. Of concern here is the speed in resolving a problem or calculate

problem. Due to the Quantum Computer has a Quantum Bit (qubit) and a phenomenon commonly called

superposition.

Keywords: GCL, pGCL, qGCL, quantum computer.

Quantum Guarded-Command Language (qGCL) untuk Nilai Maksimum

Abstrak

Pada komputer klasik atau komputer biner, perhitungan dilakukan secara simultan sehingga menghasilkan

persamaan dan algoritma. Hasil penelitian ini menunjukkan bahwa nilai maksimum yang ditentukan dalam

algoritma menggunakan quantum Guarded-Command Language (qGCl) dalam kuantum komputer. Awalnya

menentukan nilai maksimum dibentuk dalam Guarded-Command Language (GCL) milik Djikstra yang

kemudian diimplementasikan pada probability Guarded-Command Language (pGCL) milik Zuliani selanjutnya

diterapkan pada quantum Guarded-Command Language (qGCL) untuk hasil akhir. Perhatian di sini adalah

kecepatan dalam menyelesaikan masalah atau menghitung masalah. Karena Komputer Quantum memiliki

Quantum Bit (qubit) dan fenomena yang biasa disebut superposisi.

Kata kunci: GCL, pGCL, qGCL, komputer quantum.

1. Introduction

In this era of science and technology, computer is well known to almost everyone around the

world. Computer is known for it’s performance, efficiency and effectiveness for computing something.

But, despite of it’s great usefulness, according to research about computers that have been carried out

by scientist from the disciplines of mathematic, physic and computer science, this “currently-in-use”

computers component are rapidly shrinking. In other words, it will running out of resources for its

electronic circuits. In order to solve this problem, there is quantum computer that works based on the

quantum physics phenomenon. The study and development had been carried out [1]. A guarded

command is synonymous with a conditionally executed statement [2]. More precisely, a guarded

command is the combination of a Boolean expression B and the statement S whose execution is

controlled by B. in a sense, B “guarded” the execution of S. in Dijkstra’s notation, a guarded command

is represented as → 𝑆 .

In this research will use quantum Guarded-Command Language (qGCL) to build the simple

computer program of quantum computers. It combines programming concepts in a compact way,

before the program is written in some practical programming language. Its simplicity makes proving

the correctness of programs easier.

mailto:bpinonto@yahoo.com

JdC, Vol. 6, No. 1, Maret 2017 9

2. Quantum Computer

Quantum computers utilizing the phenomenon of 'strange' is called a superposition. In quantum

mechanics, a particle can be in two states at once. This is called a superposition state. In a quantum

computer, in addition to 0 and 1 also known as a superposition of both. This means that the situation

can be 0 and 1, instead of only 0 or 1 as in a normal digital computer. Quantum computer not using

Bits but QUBITS (Quantum Bits). Because of its ability to be in various circumstances (multiple

states), quantum computers have the potential to carry out a variety of calculations simultaneously so

much faster than digital computers.

2.1. Quantum Bit (Qubit)

Qubit or quantum bit is a unit of quantum information, the quantum analogue of the classical bit,

with additional dimensions associated to the quantum properties of the physical atom. The physical

construction of a quantum computer itself is an arrangement of entangled atoms, and the qubit

represents both the state memory and the state of entanglement in a system. A quantum computation

is performed by initializing a system of qubits with a quantum algorithm. In a classical system, a bit

would have to be in one state or the other, but quantum mechanics allows the qubit to be in a

superposition of both states at the same time, a property which is fundamental to quantum computing.

2.2. Qubit State

A pure qubit state is a linear superposition of those two state. This means that the qubit can be

represented as a linier combination of |0〉 and |1〉 :
|𝜓〉 = 𝑎0|𝑏0〉 + 𝑎1|𝑏1〉

Where:
|𝑏0〉 = qubit eigenstate of 0 = |0〉
|𝑏1〉 = qubit eigenstate of 1 = |1〉
|𝜓〉 = qubit total state

𝑎0, 𝑎1 = probability amplitudes and can in general both be complex numbers.

To measure this qubit in the standard basis, the probability of outcome |0〉 is |𝑎0|2 and the

probability of outcome |1〉 is |𝑎1|2 . Because the absolute square of the amplitudes equate to

probabilities, it follows that 𝛼 and 𝛽 must be constrained by the equation|𝑎0|2 + |𝑎1|2 = 1 [3].

2.3. Quantum Programming

Quantum programming is a set of computer programming languages that allow the expression of

quantum algorithms using high-level constructs. The point of quantum languages is not so much to

provide a tool for programmers, but to provide tools for researchers to understand better how quantum

computation works and how to formally reason about quantum algorithms.

2.3.1. Probabilistic Language (pGCL)

A guarded command language program is a sequence of assignment, skip and abort manipulated

by the standard constructors of sequential composition, conditional selection, repetition and non

deterministic choice. The BNF syntax of pGCL is as follows [4]:

 〈𝑝𝑟𝑜𝑔𝑟𝑎𝑚〉 ∷= {〈𝑝𝑟𝑜𝑐 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛〉|; }〈𝑞𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉{;
 〈𝑞𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉}
 〈𝑠𝑡𝑎𝑡𝑚𝑒𝑛𝑡〉 ∷= Skip |

 Abort |

 𝑥 ≔ 𝑒|
 〈𝑝𝑟𝑜𝑐 𝑐𝑎𝑙𝑙〉 |
 〈𝑙𝑜𝑜𝑝〉 |
 〈𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙〉 |
 〈𝑛𝑜𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑐ℎ𝑜𝑖𝑐𝑒〉 |
 〈𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑐ℎ𝑜𝑖𝑐𝑒〉 |
 〈𝑙𝑜𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘〉

 〈𝑙𝑜𝑜𝑝〉 ∷= while 〈𝑐𝑜𝑛𝑑〉 do 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 od

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Quantum_algorithm

10 Putri, Titaley, Pinontoan – Quantum Guarded-Command Language (qGCL)…………….

 〈𝑐𝑜𝑛𝑑〉 ∷= 〈𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛〉
 〈𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙〉 ∷= 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 ⊲ 〈𝑐𝑜𝑛𝑑〉 ⊳ 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉
〈𝑛𝑜𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑐ℎ𝑜𝑖𝑐𝑒〉 ∷= 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉⧠ 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉
 〈𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑐ℎ𝑜𝑖𝑐𝑒〉 ∷= 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 𝑝 ⊕ 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉

 〈𝑙𝑜𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘〉 ∷= var⦁ 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 rav

 〈𝑝𝑟𝑜𝑐 𝑐𝑎𝑙𝑙〉 ∷= 〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉(〈𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑙𝑖𝑠𝑡〉)

 〈𝑝𝑟𝑜𝑐 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛〉 ∷= proc〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉(〈𝑓𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑙𝑖𝑠𝑡〉)

 =̂ 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉

2.3.2. Quantum Language qGCL (quantum Guarded-Command Language)

Quantum procedures can be of three kinds: Initialisation (or state preparation) followed by

Evolution and finally by Finalisation (or observation) [5].

Initialisation is a procedure which simply assigns to its qureg state the uniform square convex

combination of all standard states

∀𝜒: 𝑞(𝔹𝑛) ● 𝐈𝐧(𝜒) =̂ (𝜒 ≔
1

√2𝑛
∑ 𝛿𝑥𝑥:𝔹𝑛)

Evolution models the evolution of quantum system and consists of iteration of unitary transformations

on quantum state.

∀𝜒, 𝜓: 𝑞(𝔹𝑛)●〈U(χ), U(ψ)〉 = 〈χ, ψ〉
In qGCL evolution is modeled via assignment: for example, 𝜒 ≔ U(χ) models the evolution of qureg

𝜒 by means of unitary transform U.

Finalization is entirely defined using the probabilistic combinatory of pGCL :

𝐅𝐢𝐧[𝒪](𝑖, 𝜒) =̂ ⨁ [(𝑖, 𝜒 ≔ 𝑗,
𝑃𝑆𝑗

(𝜒)

‖𝑃𝑆𝑗
(𝜒)‖

) @ 〈𝜒, 𝑃𝑆𝑗
(𝜒)〉 |0 ≤ 𝑗 < 𝑚]

2.3.3. Valid qGCL (quantum Guarded-Command Language)

The formal syntax for qGCL is as follow [4]:
〈𝑞𝑝𝑟𝑜𝑔𝑟𝑎𝑚〉 ∷= {〈𝑞𝑝𝑟𝑜𝑐 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛〉|〈𝑝𝑟𝑜𝑐 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛〉; }

 〈𝑞𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉{; 〈𝑞𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉}
 〈𝑞𝑠𝑡𝑎𝑡𝑚𝑒𝑛𝑡〉 ∷= 𝜒 ≔ 〈𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑜𝑝〉(𝜒)|
 Fin(〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉, [〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉|〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉,
 〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉])|
 In(〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉)|〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉
 𝜒 ∷= 〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉

 〈𝑞𝑝𝑟𝑜𝑐 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛〉 ∷= qproc 〈𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟〉(〈𝑓𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑙𝑖𝑠𝑡〉)

 =̂ 〈𝑞𝑝𝑟𝑜𝑐 𝑏𝑜𝑑𝑦〉
 〈𝑞𝑝𝑟𝑜𝑐 𝑏𝑜𝑑𝑦〉 ∷=var⦁〈𝑞𝑝𝑟𝑜𝑐 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉{; 〈𝑞𝑝𝑟𝑜𝑐 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉}rav

 〈𝑞𝑝𝑟𝑜𝑐 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 ∷= skip |𝑥 ≔ 𝑒|〈𝑞𝑙𝑜𝑜𝑝〉| 〈𝑞𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛〉
 〈𝑞𝑙𝑜𝑜𝑝〉 ∷=while 〈𝑐𝑜𝑛𝑑〉 do 〈𝑞𝑝𝑟𝑜𝑐 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 od
〈𝑞𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙〉 ∷= 〈𝑞𝑝𝑟𝑜𝑐 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 ⊲ 〈𝑐𝑜𝑛𝑑〉 ⊳ 〈𝑞𝑝𝑟𝑜𝑐 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉

3. Guarded Command Language (GCL)

The guarded command is the most important element of the guarded command language. In a

guarded command, just as the name says, the command is "guarded". The guard is a proposition, which

must be true before the statement is executed. At the start of that statement's execution, one may

assume the guard to be true. Also, if the guard is false, the statement will not be executed. The use of

guarded commands makes it easier to prove the program meets the specification. The statement is

often another guarded command [6].

Let 𝑆, 𝑆0, 𝑆1, … be statement, 𝐸 be an expression, 𝐵, 𝐵0, … be Boolean expression, 𝑥 be any identifier

and 𝑇 be any type. Then, the syntax of statement in GCL is defined as follow:

http://en.wikipedia.org/wiki/Proposition
http://en.wikipedia.org/wiki/Execution_%28computers%29
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Program_specification

JdC, Vol. 6, No. 1, Maret 2017 11

 𝑆 ∷= 𝑠𝑘𝑖𝑝 no-op

 | 𝑥 ≔ 𝐸 assignment

 | 𝑆1: 𝑆2 sequencing

 | 𝑖𝑓 𝐵0 → 𝑆0[]𝐵1 → 𝑆1[] … []𝐵𝑛 → 𝑆𝑛𝑓𝑖 selection / condition

 | 𝑑𝑜 𝐵 → 𝑆 𝑜𝑑 iteration / repetitive

 | [𝑣𝑎𝑟 𝑥: 𝑇; 𝑆] block

4. Boolean –Valued Function

The name “boolean function” comes from the boolean logic invented by George Boole (1815-

1864), an English mathematician and philosopher. As this logic is now the basic of modern digital

computers, Boole is regarded in hindsight as a forefather of the field of computer science. Boolean

values (or bits) are number 0 and 1. A boolean function 𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛) of n variables is a

mapping 𝑓: {0,1}𝑛 → {0,1}. One says that 𝑓 accepts a vector ∈ {0,1}𝑛𝑖𝑓 𝑓(𝑎) = 1 , and rejects it if

𝑓(𝑎) = 0. In other words, a Boolean-valued function is a function of the type 𝑓: 𝑋 → 𝔹 , where X is

an arbitrary set and where 𝔹 is a Boolean domain, where 𝔹 = {0,1} whose element are interpreted as

logical values, for example, 0=false and 1=true [7].

5. Hoare Logic

Hoare logic (also known as Floyd-Hoare Logic or Hoare rules) is a formal system with a set of logical

rules for reasoning rigorously about the correctness of computer program. The central feature of Hoare

logic is the Hoare triple. A triple describes how the execution of a piece of code changes the state of

the computation. A Hoare triple is of the form

{𝑃}𝑆{𝑄}

Where :

 𝑃 and 𝑄 are assertions and 𝑆 is a command.

 𝑃 is named the precondition and 𝑄 the postcondition

When the precondition is met, executing the command establishes the postcondition. Assertions are

formulae in predicate logic. Hoare logic provides axioms and inference rules for all the constructs of

a simple imperative programming language [8].

6. Research’s Method

This research has been carried out by studying literature and applying it to make a simple

computer program as an output. The variable used in this research will be listed associate to its theory.

This research has been done with overall simple procedure that could be list by :

1. Literature collection and study. Collecting data (literatures about quantum computer especially

it’s properties and any algorithm that can be used in it) then studying it.

2. Construction Guarded Command Language. Make a simple case to construct guarded

command. In this case, the author make a model about maximum value.

3. Applying simple Guarded Command Language on Quantum Computer using quantum

Guarded-Command Language.

7. Result and Discussion

In this research, the author will make a simple GCL implemented into Quantum Computer

using the semantic who it work in Quantum. The author using Djikstra’s Guarded-Command Language

and in quantum itself, the author using quantum Guarded-Command Language or better known as

qGCL, which that qGCL is an extension of pGCL, which in turn extends Djikstra’s Guarded-

Command Language GCL with probabilism. But before that, the author will make the GCL in a

classical computer.

7.1. Contsruct Simple Guarded Command Language

In the making of coding in Guarded Command is not too difficult, because essentially as same as

using the pascal programming or the other. The first thing to do is to find some easy case or usual case

https://en.wikipedia.org/wiki/Assertion_%28computing%29
https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Postcondition
https://en.wikipedia.org/wiki/Predicate_logic
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Inference_rule
https://en.wikipedia.org/wiki/Imperative_programming

12 Putri, Titaley, Pinontoan – Quantum Guarded-Command Language (qGCL)…………….

to make. After that, the author will make a model in GCL. This time, the author will make mathematical

equations like addition and so forth. We know addition, subtraction, multiplication and division are

the most basic things in mathematics. Because it can be easy to compare them in GCL programming.

First of all, the author will try to form a GCL in a classical computer. The authors make three examples

of different simple cases of GCL, to make it easier understood by the reader in constructing GCL,

before the next stage of formation of cases used in this thesis is the maximum value.

Example 1:

In pseudocode :

 𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 𝑐 ≔ 𝑇𝑟𝑢𝑒
𝑒𝑙𝑠𝑒 𝑐 ≔ 𝐹𝑎𝑙𝑠𝑒

In Guarded Command Language:

Example 1 above, using the condition rule, where the syntax using if and ends with fi.

In general from of this construct is:

 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑙𝑖𝑠𝑡

 | 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑙𝑖𝑠𝑡

| 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑙𝑖𝑠𝑡

 …

 𝑓𝑖

Each conditions of the above is known as the Guard. Guard and the following statement, together,

called Guarded Command. when control reach if the statement in the language with guarded command,

a nondeterministic choice made between guard that evaluates true, and statements the following list of

selected Guarded be executed. The final condition may optionally be else. If none of the conditions

evaluates to true, the statement list following the else, if any, is executed. If there is no else, the if

statement as a whole has no effect.

Example 2:

After that the author will try to make using Skip command.

In pseudocode :

 𝑖𝑓 𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑥 ≔ 0

In Guarded Command Language :

In GCL there are two command called Skip and Abort. Skip and Abort command are very

different. Abort is the undefined instruction: do anything. The abort statement does not even need to

terminate. It is used to describe the program when formulating a proof, in which case the proof usually

fails. Skip is the empty instruction: do nothing. It is used in the program itself, when the syntax requires

a statement, but the programmer does not want the machine to change states. At this time, the authors

use the Skip command just for an example. When the Skip command is done, the program will stop

doing any command.

After the author tried in example 1 and 2 using the condition rule 𝑖𝑓 − 𝑓𝑖 and skip rule, the author

tried again with another example. For a basic command such a sum in arithmetic and etc, it remains

the same in the GCL. If we write any in pseudocode command such a addition (+), subtraction (-),

multiplication (*) and division (/) then the GCL sheetscode remains the same.

Example 3:

In Pseudocode :

𝑧 = 𝑥 + 𝑦 𝑧 = 𝑥 ∗ 𝑦

𝑧 = 𝑥 − 𝑦 𝑧 = 𝑥/𝑦

If a<b → c≔true

| a≥b → c≔false

Fi

If error=True → x:=0

 | error=False Skip

Fi

http://en.wikipedia.org/wiki/State_%28computer_science%29

JdC, Vol. 6, No. 1, Maret 2017 13

In Guarded Command Languge :

Basically, the writing on the command guarded by pascal programming, so the coding was formed is

not much different. According to GCL design in the above, there are no changes to be when

pseudocode is made. But it was only a base before construct it into Guarded Command Language.

After the author construct a coding in GCL, the author implement or apply it into a quantum

computer. In applying it, the author uses qGCL as mentioned earlier in this chapter (IV). But the author

doesn’t use the above example. The author want to using example to find or determine the maximum

value. To see it in the qGCL form, the author using the model of maximum value for that GCL.

7.2. Determine The Maximum Value

In this section, the author will make coding for GCL (Guarded Command Language) about

looking for maximum value. Model programs created using the x and y where x and y are integers

which entered into coding assigns where m as the maximum value of x and y using condition rule.

In Pseudecode :

 𝑖𝑓 𝑥 > 𝑦 𝑡ℎ𝑒𝑛 𝑚 ≔ 𝑥 𝑒𝑙𝑠𝑒 𝑚 ≔ 𝑦
In Guarded Command Language :

7.3. Using Derivation of Program

With designs on Guarded Command on top of the maximum value, still can not be applied to

quantum computers, because it was the author will do a formal derivation of the program.

The formal requirement of writer program performing is ≔ max (𝑥, 𝑦) . So with follows:

 Precondition :

Precondition is a predicate describing the condition the function relies on for correct operation.

So, the precondition of the perform is

𝑥 ≥ 𝑦 ˄ 𝑦 ≥ 𝑥

 Postcondition :

Postcondition is a predicate describing the condition the function establishes after correctly

running. To see the perform construct above is that for fixed x and y it establishes the relation

𝑅 ∶ (𝑚 = 𝑥 𝑜𝑟 𝑚 = 𝑦)˄ 𝑚 ≥ 𝑥 ˄ 𝑚 ≥ 𝑦.
For first, let 𝑚 ≔ 𝑥 for standard the way of establishing the truth of 𝑚 = 𝑥 for fixed 𝑥. Take

weakest precondition as it’s guard. Deriving

𝑤𝑝("m≔x", 𝑅) = (𝑥 = 𝑥 𝑜𝑟 𝑥 = 𝑦)

𝑎𝑛𝑑 𝑥 ≥ 𝑥 𝑎𝑛𝑑 𝑥 ≥ 𝑦

 = 𝑥 ≥ 𝑦

For ≔ 𝑦 , to make fixed for 𝑦 with the assignment "𝑚 ≔ 𝑦" with the guard

𝑤𝑝("m≔y", 𝑅) = 𝑦 ≥ 𝑥 ;
So, back to above perform, the author get,

|[

Var

 Z := x+y

 Z := x-y

 Z := x*y

 Z := x/y

]|

|[

Var m,x,y:int;

If x>y → m:=x

| x<y → m:=y

Fi

]|

If x>y → m:=x

| y>x → m:=y

Fi

14 Putri, Titaley, Pinontoan – Quantum Guarded-Command Language (qGCL)…………….

 Invariant

As an example of the derivation of a repetitive construct, author derive a program for the

greatest common divisor (gcd) of two positive numbers for fixed positive 𝑥 and 𝑦 have to

establish the final relation.

𝑥 = gcd (𝑋, 𝑌)

For the invariant relation

𝑃: gcd(𝑋, 𝑌) = gcd(𝑥, 𝑦) 𝑎𝑛𝑑 𝑥 > 0 𝑎𝑛𝑑 𝑦 > 0

A relation that has the advantage of being easily established by 𝑥 ≔ 𝑋; 𝑦 ≔ 𝑌. Take weakest

precondition as it’s guard, because about the gcd-fuction at which gcd(𝑥, 𝑦) = gcd(𝑥 −
𝑦, 𝑦) 𝑖𝑓 𝑥 > 𝑦 , a possible guarded list would be 𝑥 ≔ 𝑥 − 𝑦. Deriving

𝑤𝑝(x≔x-y), 𝑃 = (gcd(𝑋, 𝑌) = gcd(𝑥 − 𝑦, 𝑦) 𝑎𝑛𝑑 𝑥 − 𝑦 > 0 𝑎𝑛𝑑 𝑦 > 0)

So the conjuction implied by P, and the guarde 𝑥 > 𝑦 as far as the invariance of P is concerned.

Then deriving

𝑤𝑝(y≔y-x), 𝑃 = (gcd(𝑋, 𝑌) = gcd(𝑦 − 𝑥, 𝑥) 𝑎𝑛𝑑 𝑦 − 𝑥 > 0 𝑎𝑛𝑑 𝑥 > 0)

And the guard would be 𝑦 > 𝑥. The next effort is the construct would be this performs :

And with the same version using Euclid’s Algorithm in great common divisor, with would

have written down with follows :

7.4. Applying to qGCL (quantum Guarded Command Language)

In this section, the author was applying a program that has been made above that determine the

maximum value added to quantum computers that where here the author uses qGCL. As in what

is already known according to section 2.2.4 of the formal syntax for qGCL. In this section will using
〈𝑞𝑙𝑜𝑜𝑝〉 and 〈𝑞𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙〉 in a models.

 Before construct into qGCL, the author will use the other Quantum Programming for probabilistic

that is using pGCL. By using 〈𝑝𝑟𝑜𝑐 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛〉 and value parameter is 𝑥, 𝑦: 𝔹𝑘 where 𝑥 and 𝑦

identifier as Boolean-valued functions on 0. . 𝑘 or called as bit register. Parameter result is 𝜒 where 𝜒

is a square-convex complex superposition of standart states.

Proc exp (value x,y:𝔹𝑘 ; result 𝜒: 𝔹𝑛) =̂ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡
With a statement that is formed according to the model in section 4.1.2, with syntax 〈𝑙𝑜𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘〉 is

var⦁ 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 rav . The statement in here is the body portion of the contents of the model with be

created using loop rule that is while 〈𝑐𝑜𝑛𝑑〉 do 〈𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉 od, then the model is formed to be like

this below.

 Because that terms of pGCL itself is expresses the qGCL, that enables to combine code and

specification since the result has a semantic denotation to which refinement applies. pGCL denotes the

guarded-command language extended to contain probabilism. So the next thing to do is to design

X:=X ; y:=Y

do x>y → x:=x-y

| y>x → y:=y-x

od

 X:=X ; y:=Y ;
 While x ≠ y do if x > y then x := x - y

 else y := y - x

 fi

 od

Proc exp (value x,y:𝔹𝑘 ; result 𝜒: 𝔹𝑛) =̂
Var x,y •

𝜒 ≔ 0;
while x ≠ y do

 if x > y → 𝜒:= x - y

 | y > x → 𝜒:= y - x
 fi

 od

rav

JdC, Vol. 6, No. 1, Maret 2017 15

qGCL where the author was simply replace proc by qproc as in 〈𝑞𝑝𝑟𝑜𝑐 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛〉 and let

the compiler doing all the necessary type changes like in section 2.2.4. Procedure exp now become

qexp. The author use procedure exp as a quantum procedure because it is possible to compute

exponentiation on quregs in a superposition of standard states. The parameters used are value result

for 𝑥, 𝑦: 𝛿(𝔹𝑘) where 𝑥 and 𝑦 identifier as qureg (qubit registers).

qproc qexp (value result x,y:𝛿(𝔹𝑘) ; value result 𝜒: 𝛿(𝔹𝑛)) =̂ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡

in this case the author use a substraction operator 𝑆𝑢𝑏(𝜒, 𝜓) with initialitation 𝜒 ≔ 0 is readily

modelled via the Dirac 𝛿 map. For the overall design will be shown as below :

 In qGCL models above are very similar to those the author form in pGCL. In pGCL itself the

Guarded-Command Language extended with probabilism. So that listed most common form GCL

itself. And in qGCL, GCL combined with quantum computation logic. The program is modeled can

be quickly calculated due qGCL utilize Dirac 𝛿 where on quantum programming Dirac 𝛿 is acting as

a superposition.

 In this study proves that in the quantum programming is needed GCL or so-called Guarded-

Command Language. As in the form of pGCL with probabilism and qGCL are essentially using GCL.

In other words GCL is in a classical computer language program that is used in solving problems in

quantum computer before it is implemented.

8. Conclusion

Based on the result that has been described in the last section, obtained conclusions that GCL or

called Guarded Command Language is easy to construct program because the essentially the same as

using the pascal programming or the others. The term of this guarded command is simple. The guarded

will be executed when its true. As has been done by the author in determining the maximum value.

In this research considered Djikstra’s plain Guarded Command Language thus omitting

probabilism, so the author expand the normal form approach from pGCL and in turn to qGCL.

 If the GCL was proven is true, then implemented into the Quantum Computer will use pGCL or

qGCL will be true. Of concern here is the speed in resolving a problem or calculate problem. Due to

the Quantum Computer has a Quantum Bit (qubit) and a phenomenon commonly called superposition.

This proves that the Quantum Computer itself is not only made to carry out an issue or program quickly

but to solve the problem where the problem may not be solved in Classical computer (digital

computer).

9. References

[1] Marinescu, D.C and G.M. Marinescu. 2010. Classical and Quantum Information. Academic

Press.

[2] Dijkstra, E. W. 1975. Guarded Commands, Nondeterminacy and The Formal Derivation of

Programs. CACM. 18:453-457.

[3] Williams, Collin P. and Clearwater, Scott H. 1998. Explorations in Quantum Computing.

Springer-Verlag. New York.

[4] Zuliani, P. 2005. Compiling Quantum Programs. Journal Acta Informatica. 00: 1-39.

qproc qexp (value result x,y:𝛿(𝔹𝑘) ; value result 𝜒: 𝛿(𝔹𝑛)) =̂
Var x,y •

𝜒 ≔ 𝛿0;
while x ≠ y do

 if x > y → 𝜒 ≔ 𝑆𝑢𝑏(𝑥, 𝑦)

 | y > x → 𝜒 ≔ 𝑆𝑢𝑏(𝑦, 𝑥)
 fi

 od

rav

16 Putri, Titaley, Pinontoan – Quantum Guarded-Command Language (qGCL)…………….

[5] Zuliani, P. 2004. Non-Deterministic Quantum Programming. Proceeding QPL 2004. Facoltà di

Scienze e Tecnologie Informatiche Libera Università di Bolzano Italy. pp 179–195.

[6] Sanders, J. W. and P. Zuliani. 2000. Quantum programming. Mathematics of Program

Construction, Springer-Verlag LNCS. 1837 : 84.

[7] Jukna, S. 2012. Boolean Function Complexity, Algorithms, and Combinatorics. Springer-Verlag.

Berlin Heidelberg. 27 : 3-53.

[8] Ying, Mingsheng. 2013. Hoare Logic for Quantum Programs. Samsonfest. University of

Technology. Sydney.

