
 

8 
 

 

GUI Application to Setup Simple Graph on the Plane using Tkinter of Python 

Gery J. Sumual1, Benny Pinontoan1*, Luther A. Latumakulita1 

1Department of Mathematics-Faculty of Mathematics and Natural Sciences–Sam Ratulangi University Manado, Indonesia 
 
 ∗Corresponding author : bpinonto@gmail.com 
 

A B S T R A C T  

In graph theory, drawing a simple graph on the plane might result an 

intersection of pair of edges that is not intended as a vertex called crossing. The 

least amount of crossing in any simple drawing of a graph is the crossing number 

of that graph, 𝑐𝑟(𝐺). Given a graph G and an integer 𝐾, the general problem to 

proof 𝑐𝑟(𝐺) ≤ 𝐾 is an NP-Complete problem, which means, it is likely intractable. 

One of the way to proof 𝑐𝑟(𝐺) ≤ 𝐾 is by showing the drawing of graph 𝐺 with 𝐾 

number of crossing; doing it with a computer application can be much of help. 

Therefore, the purpose of our research is to create one using Tkinter of Python. The 

development of the application is feature driven. The developed features are used 

to find any simple drawing of graphs on the plane. As the result, the application can 

proof 𝑐𝑟(𝐾3,3)  ≤  1, 𝑐𝑟(𝐾6)  ≤  3, and 𝑐𝑟(𝐾𝐺5,2)  ≤  2. 

ARTICLE INFO 

Received : 14 January 2021 

Received after revision : 10 July 2021 

Available online : 11 July 2021 

 

Keywords:  
Graph Theory 
Crossing Number  
Tkinter  
Python 
Feature Driven Development 

 

1. INTRODUCTION 

Graph is one of the modelling tools of objects or 
processes and their relations. In 1735 the mathematician 
Leonard Euler drawn graph model of the Konigsberg 
bridgeproblem on a two dimensional plane, solved it, 
and consequently, instigated a new field in mathematics 
which is now known as Graph Theory. Many other real-
world problems can be modelled using graph provided 
there are set of objects or processes and pairwise 
relations between them. The objects or processes can be 
represented as vertices and their relations as edges. 

In a drawing of a graph on the plane, edges can 
cross. This is, in some cases, to be minimized, if not to be 
avoided. One of the concepts in graph theory that 
concern with this is the crossing number, which is the 
minimum number of crossings among all ‘good’ 
drawings of a graph in the plane [15]. In real world 
application such as the circuit layout of Very Large Scale 
Integration (VLSI), crossing number is used to obtain the 
lower bound on the amount of chip area of VLSI devices 
like microprocessors and memory chips [10]; 
Additionally, crossings in the circuit layout could cause 
short circuit and therefore worth minimized 
independent of the chip area consideration.  

Problems studying the minimizing of crossings of a 
graph G, in graph theory, include: crossing number 
𝑐𝑟(𝐺), rectilinear crossing number 𝑐𝑟̅(𝐺), and 
pagenumber 𝜌(𝐺). Crossing number is an NP 
(nondeterministic polynomial time)-Complete problem, 
whereas rectilinear crossing number and page number 
are NP-Hard problems. Hence, these problems are likely 
to be difficult, and it is justified, in general, to focus on 
inexact methods that only estimate crossing numbers. 

To prove that 𝑐𝑟(𝐺)  =  𝑘, usually by proving 
𝑐𝑟(𝐺) ≤  𝑘 and 𝑐𝑟(𝐺) ≥  𝑘. One of the ways to prove 
𝑐𝑟(𝐺) ≤  𝑘 is by drawing the graph 𝐺 showing 𝑘 
crossings. This is not easy to do manually. It is needed 
and would be handy to have an application that can setup 
graphs which have drawing conform to the one in 
crossing number definition, and also capable of moving 
vertices, along with their incident edges, and reroute 
vertices.  

The motivation to use Python programming 
language [17] is the fact that it has been widely used in 
recent times and has large community all around the 
world; it’s well maintained and well documented. The 
language is dynamic and expressive with high readibility, 
enabling high productivity and faster innovation for its 
programmers. 

The Application is in a graphical user interface 
(GUI) format for the user to draw vertices and edges in 
setting up a simple graph on the plane, and altering the 
layout by moving the vertices along with their incident 
edges. One of the Python GUI framework that’s 
considered to be a genuine one is Tkinter [19], it is 
lightweight and easy to use compared to other 
frameworks. This makes Tkinter a compelling choice for 
developing the application quickly and functional.  

Thus, the aimed result is to create an application 
using Tkinter of Python that solely used to setup graph 
layout on the plane, and have the capability to proof 
𝑐𝑟(𝐺) ≤ 𝑘 of some graph 𝐺 with a given integer 𝑘 by 
showing the drawing of the graph with no more than 𝑘 
crossing(s). 

 
 
 

d’CartesiaN  
 

Jurnal Matematika dan Aplikasi 
 

p-ISSN:2302-4224     e-ISSN: 2685-1083 

J o u r n a l  h o m e p a g e: https://ejournal.unsrat.ac.id/index.php/decartesian 

https://ejournal.unsrat.ac.id/index.php/decartesian


GUI Application to Setup Simple Graph on the Plane using Tkinter of Python 
d’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 10, No. 1 (Maret 2021): 8-14 

 

9 

 

 
2. LITERATURE REVIEW 

2.1. Graph Theory 

In 1735 Leonhard Euler was trying to come up with 
a solution for a problem called “Seven Bridges of 
Königsberg”. The problem was to find a walk through the 
city that would cross each bridge once and only once. He 
was looking for some elegant and practical abstraction of 
this problem. His abstraction laid down the foundation 
of graph theory. Euler was the first person who used 
terms like vertex and edge. He formed a brand new 
mathematical discipline. Graph theory can be used for 
modeling almost any structure which contains objects 
and relations between them [20].  

 
Figure 1. (a) The Königsberg Bridge problem in 1735; 

(b) Euler’s graphical representation 

According to [20], nowadays graph theory is one of 
the most evolving disciplines of mathematics. Graph 
theory is used for modeling lots of real-world problems 
like electric circuits, road networks, railway networks, 
social and information systems. Without graph theory 
there would be no satellite navigation in our cars, Google, 
etc. 

 
2.2. Graph and Simple Graph 

According to [2], A Graph 𝐺 is an ordered triple 
(𝑉(𝐺), 𝐸(𝐺), 𝜓𝐺) consisting of a nonempty set V(G) of 
vertices, a set 𝐸(𝐺), disjoint form 𝑉(𝐺), of edges, and an 
incidence function 𝜓𝐺 that associates with each edge of 
G an unordered pair of (not necessarily distinct) vertices 
of 𝐺, if 𝑒 is an edge and 𝑢 and 𝑣 are vertices such that 
𝜓𝐺(𝑒) = 𝑢𝑣, then e is said to join 𝑢 and 𝑣; the vertices 𝑢 
and 𝑣 are called the ends of 𝑒. Example from [2]:  

𝐺 = (𝑉(𝐺), 𝐸(𝐺)), 𝜓_𝐺) 
𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} 

𝐸(𝐺) = {𝑒, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7} 
And 𝜓𝐺 is defined by 

𝜓𝐺(𝑒1 ) = 𝑣1𝑣2, 𝜓𝐺(𝑒2) = 𝑣2𝑣3, , 𝜓𝐺(𝑒3) = 𝑣3𝑣3, 
𝜓𝐺(𝑒4) = 𝑣3𝑣4, 𝜓𝐺(𝑒5) = 𝑣2𝑣4, 𝜓𝐺(𝑒6) = 𝑣4𝑣5, 

𝜓𝐺(𝑒7) = 𝑣2𝑣5, 𝜓𝐺(𝑒8) = 𝑣2𝑣5 
 

 
 

 
Here are some basic terminology and their 

definition according to [6] : 

• If vertex v is an endpoint of edge e, then v is said 

to be incident on e, and e is incident on v. 

• A vertex u  is adjacent to vertex v if they are 

joined by an edge. 

• Adjacent edges are two edges that have an 

endpoint in common. 

• A proper edge is an edge that joins two distinct 

vertices. 

• A simple adjacency between vertices occurs 

when there is exactly one edge between them. 

• Multi-edge is a collection of two or more edges 

having identcial endpoints. 

•  A self-loop is an edge that joins a single 

endpoint to itself. 

According to [6], Most of theoretical graph theory is 
concerned with simple graphs. This is partly because 
many problems regarding general graphs can be reduced 
to problems about simple graphs. A simple graph is a 
graph that has no self-loops or multi-edges. An example 
of a simple graph: 

2.3. Drawing of graph on the plane 

Drawing of graph on the plane can be done in many 
different ways. According to [15], The properties of a 
good drawing are: no edge crosses itself, no pair of 
adjacent edges cross, two edges cross at most once, and 
no more than two edges cross at one point. Furthermore, 
[8] points out that edge may cross only edges, there’s no 
edge crossing a vertex or a vertex cross another vertex 
(coincide). Lastly, the remark from [21] is that a good 
graph is “one for which all intersecting graph edges 
intersect in a single point and arise from four distinct 
graph vertices”. 

2.4. Crossing number problem 

Given a good graph, The crossing number is the 
minimum possible number of crossings with which the 
graph can be drawn, including using curved (non-
rectilinear) edges [21]. According to [16], a graph G is 
said to be k-crossing-critical if 𝑐𝑟(𝐺) satisfies: “for every 
edge e of G, 𝑐𝑟(𝐺 − 𝑒) < 𝑘, yet 𝑐𝑟(𝐺) ≥ 𝑘”. [3] has shown 
that the general crossing number decision problem 
“Given 𝐺 and an integer 𝐾 is 𝑐𝑟(𝐺) ≤ 𝐾?” is an NP-
complete problem which means likely to be intractable. 

Figure 3. Another 
diagram of 𝐺 

Figure 4. A diagram of 
G 

Figure 5. A simple graph 

Figure 2. Good drawing of simple graphs on the plane 



Gery J. Sumual, Benny Pinontoan, Luther A. Latumakulita 

d’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 10, No. 1 (Maret 2021): 8-14  

 

10 
 

 

2.5. Rectilinear crossing number problem 

A straight-line drawing of a graph G is a mapping 
which assigns to each vertex a point in the plane and to 
each edge a straight-line segment connecting the 
corresponding two points. The rectilinear crossing 
number of a graph 𝐺, 𝑐𝑟̅(𝐺), is the minimum number of 
pairs of crossing edges in any straight-line (rectilinear) 
drawing of 𝐺. Determining or estimating 𝑐𝑟̅(𝐺)  appears 
to be a difficult problem, and deciding if 𝑐𝑟̅(𝐺) ≤ 𝑘 is 
known to be NP-hard [4]. A corresponding example of 
this problem is in the figure 6 above ignoring the middle 
graph with curved edges. 

2.6. Pagenumber problem 

The book with k pages is the topological space 𝐵𝑘 
that consists of a line called the spine and k halfplanes 
called the pages, all having the spine as their common 
boundary [14]. A book-embedding of a graph G is an 
embedding of vertices of G along the spine of a book, and 
edges of G on the pages so that no two edges on the same 
page intersect; the minimum number of pages in which 
a graph can be embedded is called the page number 𝜌(𝐺) 
[7]. It has been shown by [11] that optimal book 
embedding is an NP-hard problem. 

2.7. Python programming language 

Python is a general-purpose, high-level 
programming language which is widely used in the 
recent times. Its design philosophy emphasizes code 
readibility, and its syntax allows programmers to express 
concepts in fewer lines of code than would be possible in 
languages such as C. The language constructs enable the 
user to write clear programs on both a small and large 
scale. The most important feature in python being it 
supports multiple programming paradigms, including 

object-oriented, imperative and functional 
programming or procedural styles [18]. 

2.8. Graphical User Interface (GUI) 

A Graphical user interface allows a user to interact 
with a computer program using a pointing device that 
manipulates small pictures on a computer screen. The 
small pictures are called icons or widgets. Various types 
of pointing devices can be used such as a mouse, a stylus 
pen, or a human finger ona touch screen [12]. 

[12] outline the structure of a GUI program as the 
following: 

• Create the icons and widgets that are displayed to 

a user and organize them inside a screen window. 

• Define functions that will process user and 

application events. 

• Associate specific user events with specific 

functions. 

• Start an infinite event-loop that processes user 

events. When a user event happens, the event-

loop calls the function associated with that event. 

Python does not implement implement GUI, event-
driven-programming in its core functionality. GUI 
programming is implemented using imported modules 
which are often referred to as “toolkits”, a few of them 
are Tkinter, PyQt, wxPython, and kivy [12]. 

2.9. Tkinter 
Tkinter, or “Tk interface”, is a module of python 

that provides an interface to tk GUI toolkit, developed in 
TCL (Tool command Language) and multiplatform, 
with support for Linux, MAC OS and MS Windows [2]. 
Tk is natively present in Linux and MAC OS, and can be 
easily installed on MS Windows, but it is not part of 
Python. Tkinter is part of Python, being called “Tkinter” 
in versions prior to 3, and “tkinter” on  subsequent 
versions  
2.10. System/software Development 

Systems development is the process of defining, 
designing, testing, and implementing a new software 
application or program. According to [9], developing a 
software typically involves: 

• Selecting methodology 

• Gathering requirements 

• Developing a design 

• Constructing code 

• Testing 

• Managing configuration and defects 

• Deploying the software 

 

3. RESEARCH METHODOLOGY 

3.1. Time and Research Place 

The research had been conducted in Mathematics 
Departments of Sam Ratulangi University from 
February until march 2020, and then continued from 
home until June 2020 due to CoVid-19 pandemic. 

3.2. Softwares 
1) Integrated Development and Learning 

Environment (IDLE) of Python 

Figure 7. Embedding 𝐾5 in a three-page book  

Figure 6.  Different drawings of the complete graph 
𝐾5, which is a graph with five vertices and simple 
adjacency among them; 𝑐𝑟(𝐾5) = 1 and 𝐾5 is a 1-

crossing-critical graph 



GUI Application to Setup Simple Graph on the Plane using Tkinter of Python 
d’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 10, No. 1 (Maret 2021): 8-14 

 

11 

 

IDLE is an integrated development 
environment that is bundled with the Python 
distributions of Windows operating system. IDLE 
is written in Python using Tk library. The version 
of Python and IDLE used to develop the 
application are the same,  3.7.6.  

2) Python Tkinter toolkit 
Tkinter is an abbreviation for “Tk interface”. 

“Tk” is a platform independent, customizable, 
and configurable GUI library. The Python 
package ‘tkinter’ allows Python programs to use 
the TK libraries. The virtues of ‘tkinter’ are that it 
is fast, and usually comes bundled with Python. 
The version of Tk used in this research is 8.6.9. 

3.3. Research Stages 

The stages to be used in completing this research 
are as follows: 

1) Study the relevant literature from articles, books, 
journals, and websites. It was was done in order 
to understand the background, context, scope, 
and what justifies the research, as well as refining 
the problem at hand and knowing the methods to 
develop the application.  

2) Determine the methodology and method for the 
application development. Based on [1], it was the 
feature driven development (FDD) method, as 
part of  Agile methodology, that was chosen. Agile 
methodology is about feedback and change [22], 
as part of this approach, FDD method consists of 
five sequential processes [12] where the last two 
(design and build) are iterative part of this 
method which supports quick adaptations to late 
requirements and needs. 

 

4. RESULTS AND DISCUSSION 

4.1. Python IDLE 

IDLE is a GUI application that is written in Python 
using Tkinter, so it is a good example of Tkinter in action. 
Therefore, Ironically enough, the GUI application from 
this research is developed within another GUI 
application that is also based on Tkinter framework. 

 
4.2. Canvas Widget of Tkinter 

In Tkinter there is a widget called Canvas, a widget 
inspired from a real world canvas that is versatile and 
used for drawing simple shapes to complicated ones. The 
shapes created in tkinter canvas are coincide each other 
in a sequential manner, the sequence is in the canvas 
display list and it’s mutable. The options to setup the 
Canvas widget including size and background color. 

Canvas widget have properties and methods that are 
indispensable for creating the application: 

• Canvas.create_oval(𝑥0, 𝑦0, 𝑥1, 𝑦1, options*) for 

creating vertices 

• Canvas.create_line

(𝑥0, 𝑦0, 𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 ∗ ) for creating 

edges; the edges goes through the series of 

points (𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) 

• Object ids and Tags for identifying every single 

objects on canvas and associating a tag with any 

number of them 

• Canvas.coords(tag or id, 𝑥0, 𝑦0, … , 𝑥𝑛, 𝑦𝑛) for 

returning the canvas coordinates of a canvas 

object if tag or id  is the only argument passed, 

else, replacing the canvas coordinates of a 

canvas object with the new canvas coordinates 

passed in the argument. 

4.3. Overall model 

• The application is mainly consist of a canvas 

widget to draw vertices and edges. 

• The drawing of the graphs should be simple, 

that is, any self-loop or multi-edge must be 

prevented.  

• The layout of graphs must be alterable in order 

to find any simple drawing of graphs 

• The drawing the graphs must include using 
curved(non-rectilinear) edge 

4.4. Feature list 

Based on the overall model of the application, the 
features that were created are as follows: 

• Creating vertices for drawing vertices flexibly 

on the canvas. 

• Creating edges for making proper edges and 

ensuring simple adjacency between vertices 

• Moving vertex along with its incident edges for 

finding any simple and rectilinear drawing of 

the graph on the plane. 

• Bendable edges around vertices to include non-

rectilinear drawing of the graphs 

 

4.5. Plan by feature 

Creating vertices is the most simple and 
independent of all other features, whereas the creating 
edges is the second to it. It is obvious that those two 
features are required for moving vertex along with its 
incident edges, which can make the graph layout 
alterable, enabling the ability to prove rectilinear 
crossing number of some graph.  

Bendable edges around vertices should be the last 
to be designed and built for it is dependent of all other 
features, and would need some calibration. The edges or 
lines will bend when they go through points between and 
in addition to their endpoints; these points will be called 
control points. Potent control points will be surrounding 
the vertices so that the edges can bend around them. This 
feature will fully realized the research aim of proving 
crossing number of some graph. 

 
 

Figure 8. Processes of FDD  



Gery J. Sumual, Benny Pinontoan, Luther A. Latumakulita 

d’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 10, No. 1 (Maret 2021): 8-14  

 

12 
 

4.6. Design and build by feature 

1) Creating vertices 

Inside the canvas, 
i. If the left mouse is clicked, create a new 

vertex with the click position as its center 
and radius predetermined from the coding; 

ii. Move the mouse while holding the left 
mouse to drag the newly created vertex 
according to the movement; 

iii. Release the left mouse to put the vertex in 
place and create set of points surrounding 
the vertex as the potent control points of 
edges to bend around with. 

The functions built are createNode(event), 
dragNode(event), releaseNode(event). 

2) Creating edges 

Inside the canvas, 

i. If the cursor position is on a vertex and the 
right mouse is clicked, create a new edge 
with the vertex as its starting point, and the 
cursor position as its end tip, 

ii. Move the mouse while holding the right 
mouse to drag the end tip of the newly 
created edge; If the end tip is being dragged 
near any vertex except the starting point 
vertex, then the end tip will latch and fixed 
onto that vertex which will become its end 
point, 

iii. If the right mouse button is released when 
the edge would create a multi-edge or when 
it’s not fixed onto any vertex as its endpoint, 
then, the edge will be cancelled. 

The functions built for this feature are 
createEdge(event), dragEdge(event), 
releaseEdge(event). 

3) Moving a vertex along with its incident 
edges 

Inside the canvas, 

i. If the middle mouse button is clicked on any 
vertex, that vertex along with its incident 
edges(if any) are tagged as active vertex and 
active edges, 

ii. Move the mouse while holding the middle 
mouse button to move the active vertex 
along with endpoints of the active edges 

iii. Release the middle mouse button to put the 
active vertex and active edge in place, 
remove the active tags, and update the 
potent control points surrounding the 
vertex  

The functions built for this feature are 
chooseNode(event), moveNode(event), and 
releaseMovingNode(event). 

4) Bendable edges around vertices 

It is implemented when the edge(s) are being 
dragged or moved.  

i. Input edge to bend or unbend, in other 
words, to add a control point or remove one 
if any. 

ii. Assign the control points of the edge, 
including none if it not exist, to a variable 
“controlPoints”. 

iii. Assign to variable “shadowLine1” the line 

that goes through the last two points of the 
edge. 

iv. If “controlPoints” is not empty, then, assign 
to variable “shadowLine2” the line that goes 
through the third-from-last point and the 
last point of the edge. 

v. For each vertex, except the start vertex and 
the vertices near the end tip of the edge: 
a. If “shadowLine1” found near enough a 

potent control point of those vertices, 
then, it will be actualized to be a control 
point of the edge. New potent control 



GUI Application to Setup Simple Graph on the Plane using Tkinter of Python 
d’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 10, No. 1 (Maret 2021): 8-14 

 

13 

 

point is created in an outward 
incremental manner from the vertex. 

b. If “shadowLine2” found near enough the 
new version of the last control point of 
the edge, then, the last control point of 
the edge will be removed and it will 
replace its newer version for being the 
potent control point again. 

The function designed and built for this 
feature 𝑎𝑑𝑑𝑟𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑜𝑖𝑛𝑡𝑠() is embedded 
in the function 𝑑𝑟𝑎𝑔𝐸𝑑𝑔𝑒() and 𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒().  
Following is the flowchart of adding or removing 
control points: 

Figure 10. Adding or removing control points 
flowchart 

4.7. Proving 𝒄𝒓(𝑮) ≤ 𝒌 of some graph G using the 
application 

Figure 11. Proof of  𝒄𝒓(𝑲𝟑,𝟑) ≤ 𝟏 

The first graph is a complete bipartite graph that 
have two disjoint sets of three vertices each, i.e., the 
graph 𝐾3,3. The graph was drawn in a way that no pair of 
vertices in the same set are adjacent, while every pair of 
vertices in the two different sets are adjacent. The 
drawing of the graph was with the intention to avoid 
crossing as much as possible, and it was found that, at 
most, the amount of crossing in the graph was one, 
proving 𝑐𝑟(𝐾3,3) ≤ 1. 

The second graph is the complete graph with six 
vertices where each pair of the vertices are adjacent one 
another; it’s the graph of 𝐾6. The drawing of this graph 
was by having it in a triangular convex hull, as the result, 
the amount of crossing in the graph was no more than 
three, proving 𝑐𝑟(𝐾6) ≤ 3. 

The third graph drawn in the application was the 
Kneser Graph 𝐾𝐺5,2 whose each vertex uniquely 
represent a 2-subset of {1,2,3,4,5}, and where two 
vertices are connected if and only if they correspond to 
disjoint subsets. 𝐾𝐺5,2 is also called the Petersen graph. 
The common and symmetric simple drawing of this 
graph in the plane is a pentagram within a pentagon, and 
it has five crossings. 

Yet, there is a drawing of this graph that reduced 
the crossings down to two proving 𝑐𝑟(𝐾𝐺5,2) ≤ 2. 

5. CONCLUSION AND SUGGESTION 

5.1. Conclusion 

The application was developed using the canvas 
widget with its versatile set of tools in hand and rules in 
mind. The drawing of graphs is on the plane and 
prevented from being not simple, i.e. the application 
won’t allow the creation of multi-edge or self-loop. The 
Graph setup is flexible and its layout alterable, the 
vertices are able to move along with its incident edges, 
and the edges are bendable around unincidented 
vertices.  

The application is able to proof 𝑐𝑟(𝐾3,3) ≤ 1, 

𝑐𝑟(𝐾6) ≤ 3, and 𝑐𝑟(𝐾𝐺5,2) ≤ 2 by showing the drawing of 

graph 𝐾3,3, 𝐾5, and 𝐾𝐺5,2  each have crossing(s) no more 
than 1, 3, and 2.  

Figure 9. Proof of 𝑲𝟔 ≤  𝟑 



Gery J. Sumual, Benny Pinontoan, Luther A. Latumakulita 

d’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 10, No. 1 (Maret 2021): 8-14  

 

14 
 

 

5.2. Suggestion 

• The application is functional to draw and setup 

graphs, but still lacks in-application features such 

as coloring, sizing, and labelling. 

• Rectilinear drawing is not fully integrated. 

• The number of vertices and edges of a graph the 

application can create with its functionality still 

intact are subject to the predetermined size of the 

canvas and vertices, and also computer’s 

performance. 

REFERENCES  

[1] Abrahamsson, P., O. Salo, J. Ronkainen, and J. 
Warsta. 2002. Agile software development 
methods: Review and analysis. VTT publication 
478, Espoo, Finland. 

[2] Bondy, J., and U. Murty. 1982. Graph Theory with 
Application. Department of Combinatorics and 
Optimization of Waterloo University, Ontario, 
Canada. 

[3] Beniz, and A. M. Espindola. 2016. Using Tkinter of 
Python to Create Graphical User Interface (GUI) fr 
Scripts in LNLS. Proceedings of PCaPAC2016, 
Campinas, Brazil. 

[4] Fox J., J. Pach, and A. Suk. 2019. Approximating 
the Rectilinear Crossing Number. Computational 
Geometry 81: 45-53, Elsevier. 

[5] Garey, M. R., and D. S. Johnson. 1983. Crossing 
Number is NP-Complete. SIAM J. Alg. Discr. Meth. 
4:3. Society for Industrial and Applied 
Mathematics. 

[6] Gros, J., and J. Yellen. 2004. Handbook of graph 
theory. CRC Press LLC, Florida, United States. 

[7] Guan, X., and W. Yang. 2018. Embedding 5-Planar 
Graph in Three Pages. Department of Mathematics, 
Taiyuan University of Technology, Taiyuan Shanxi-
030024, China. 

[8] Hlineny, P. 2005. On crossing-critical graphs. 
https://www.fi.muni.cz/~hlineny/papers/crossing
-sl-gems05.pdf [Accessed in May 4 2020]. 

[9] IBM. Software Development. 
https://www.ibm.com/topics/software-
development [Accesed in July 13, 2020] 

[10] Leighton, F. 1984. New Lower Bound Technique for 
VLSI. Mathematical Systems Theory 17: 47-70, 
Springer-Verlag New York Inc. 

[11] Masuda S., K. Nakajima, T. Kawashibara, and T. 
Fujisawa. 1990. Crossing minimization in linear 
embedding of graphs. IEEE Transactions on 
Computers 39: 1. 

[12] Miller B., and D. Ranum. 2014. How to think like a 
computer scientist: interactive edition. 
https://runestone.academy/runestone/books/pub
lished/thinkcspy/index.html [Accessed in May 4, 
2020]. 

[13] Palmer, S. R., and J. M. Felsing. 2002. A Practical 
Guide to Feature-Driven Development. Prentice 
Hall, United States. 

[14] Pinontoan B., J. Titaley, and C.E.J.C. Montolalu. 
2019. Book Embedding of 3-Crossing-Critical 
Graphs with Rational Average Degree between 3.5 
and 4. IOP Conference Series : Materials Science 
and Engineering. 567 012016. 

[15] Pinontoan, B., and J. Titaley. 2019. Book 

Embeddings of Infinite Sequences of Extended 
Periodic Regular Graphs.  IOP Conf. Series: 
Materials Science and Engineering 621 (2019) 
012011, IOP publishing. 

[16] Pinontoan, B., and R.B. Richter. 2003. Crossing 
Numbers of Sequences of Graph II: Planar Tiles. 
Jurnal Ilmiah Teknik Industri. 42(4): 332-341. 

[17] Python Software Foundation. Python Language 
Reference, version 3.7. Available at 
http://www.python.org. 

[18] Srinath, K. R. 2017. Python – the faster growing 
programming language. IRJET. 04:354-355. 

[19] Tkinter, https://wiki.python.org/moin/TkInter 
[20] Tomasek, J. 2013. Drawing graphs on surface of 

small genus [thesis]. Computer science institute of 
charles university, Prague, Czech Republic. 

[21] Weisstein, E. "Graph Crossing Number." 
MathWorld--A Wolfram Web Resource. 
https://mathworld.wolfram.com/GraphCrossingN
umber.html [Accessed in July 13, 2020] 

[22] Williams, L., and A. Cockburn. 2003. Agile 
Software Development: It’s about Feedback and 
Change. IEEE Computer 36: 39-43 

 
Gery J. Sumual (gjsumual@gmail.com) 

Born in Amurang, on November 9, 
1998. He pursued a Bachelor’s 
degree in the Mathematics 
Department, Faculty of 
Mathematics and Natural Sciences 
in Sam Ratulangi University. 2020 
is the last year of his Bachelor 
program. This paper is the result of 
the published thesis research he 
admitted as one of the 
requirements to obtain his bachelor 
degree. 

 
Benny Pinontoan (bpinonto@gmail.com) 

Born in Bitung, North Sulawesi, 
Indonesia, and lives in Manado. 
Completed his Bachelor’s degree in 
Technische Informatica at Faculteit 
Informatica Eindhoven, the 
Netherlands in 1993. In 2002 he 
completed his Doctoral degree in 
Mathematics at School of 
Mathematics and Statistics, 
Carlethon University Ottwa Canada. 

In 1995 he was appointed as a lecturer at Sam Ratulangi 
University and since 1st March 2006 has become a 
Profesor of Mathematics at Faculty of Mathematics and 
Natural Science, Sam Ratulangi University. 
 
Luther A. Latumakulita (lutherlatu@gmail.com) 

Born in Ambon, September 14th, 
1971, Indonesia. Completed his 
Bachelor and Master degree in 
Computer Science at the 
department of Computer Science 
of Gadjah Mada University in 
1997 and 2008 respectively. In 
2018, he graduated from the 
department of computer science 
and electrical engineering in 
Kumamoto University Japan 
earning his Doctoral degree. Since 

2008, He has been tenuring as a lecturer in the faculty of 

http://www.python.org/
https://wiki.python.org/moin/TkInter
mailto:gjsumual@gmail.com
mailto:bpinonto@gmail.com
mailto:lutherlatu@gmail.com


GUI Application to Setup Simple Graph on the Plane using Tkinter of Python 
d’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 10, No. 1 (Maret 2021): 8-14 

 

15 

 

Mathematics and Natural Sciences, Sam Ratulangi 
University. 


