Pengaruh Tekanan Sandblasting Al2O3 pada Metode Sandblasting dan Acid Etching terhadap Kekasaran Permukaan Titanium Alloy
DOI:
https://doi.org/10.35790/eg.v14i1.60672Abstract
Abstract: Dental implants are a popular solution for missing teeth, relying on osseointegration for success. Surface roughness plays a crucial role in this process and can be enhanced through methods like sandblasting and acid etching. This was a laboratory and experimental study with pre-test and post-test group design to evaluate the effects of these treatments on titanium plates. Five groups (n=5) were treated with either 98% H2SO4 etching alone or a combination of Al2O3 sandblasting at pressures of 500 to 800 kPa followed by 98% H2SO4 etching. Surface roughness was measured using a surface roughness tester and scanning electron microscopy (SEM). Results showed that sandblasting before acid etching produced greater roughness than acid etching alone. The highest roughness was observed at 500 kPa sandblasting. The 600 kPa group showed a lower increase, while the 700 kPa group had an increase, and the 800 kPa group showed a decrease. ANOVA results indicated no significant differences in post-test values (p=0.602) or in the change from pre-test to post-test (p=0.671). In conclusion, the optimal roughness was achieved in the 500 kPa Al2O3 sandblasting followed by 98% H2SO4 etching group, suggesting its potential for improving implant osseointegration.
Keywords: aluminium oxide; sulfuric acid etching; surface roughness; sandblasting; titanium alloy
Abstrak: Implan gigi merupakan pilihan perawatan yang sering dipilih untuk menggantikan gigi hilang, yang dapat berhasil dengan terbentuknya osseointegrasi. Metode sandblasting dan acid etching diketahui dapat meningkatkan kekasaran implan gigi yang dapat meningkatkan proses osseointegrasi. Penelitian ini menggunakan metode eksperimental laboratorium dengan desain pre-test dan post-test. Sampel plat titanium dibagi menjadi lima kelompok (n=5), dengan perlakuan acid etching menggunakan asam sulfat (H2SO4) 98%, serta kombinasi sandblasting aluminium oksida (Al2O3) dan acid etching H2SO4 98% pada tekanan sandblasting 500 kPa, 600 kPa, 700 kPa, dan 800 kPa. Kekasaran permukaan dianalisis menggunakan surface roughness tester dan Scanning Electron Microscopy (SEM). Hasil penelitian mendapatkan kekasaran permukaan lebih tinggi pada sampel yang diberi perlakuan sandblasting sebelum acid etching dibandingkan dengan acid etching saja. Kelompok dengan tekanan sandblasting 500 kPa menunjukkan peningkatan kekasaran terbesar (13,8%), menurun pada tekanan 600 kPa, meningkat kembali pada 700 kPa, dan kembali menurun pada tekanan 800 kPa. Hasil uji ANOVA menunjukkan tidak terdapat perbedaan bermakna antar nilai post-test (p=0,602) serta selisih nilai post-test dan pre-test (p=0,671). Simpulan penelitian ini ialah tekanan sandblasting Al2O3 sebesar 500 kPa dilanjutkan dengan acid etching H2SO4 98% menghasilkan tingkat kekasaran permukaan yang paling optimal.
Kata kunci: aluminium oksida; etsa asam sulfat; kekasaran permukaan; sandblasting; titanium alloy
References
1. Silalahi SKY, Nasution ID. Association between the number of bilateral free-end posterior tooth loss and mastication performance in RSGM USU patients. J Syiah Kuala Dent Soc. 2023;7(2):118–124. Doi:10.24815/jds.v7i2.30236
2. Elani HW, Batista AFM, Murray TW, Kawachi I, Chiavegatto FADP. Predictors of tooth loss: a machine learning approach. PLoS One. 2021;16(6):1–14. Doi: https://doi.org/10.1371/journal.pone.0252873
3. Gabiec K, Bagińska J, Łaguna W, Rodakowska E, Kamińska I, Stachurska Z, et al. Factors associated with tooth loss in general population of Bialystok, Poland. Int J Environ Res Public Health. 2022;19(4):1–12. Doi: 10.3390/ijerph19042369
4. Zafar MS, Najeeb S, Khurshid Z. Dental Implants: Materials, Coatings, Surface Modifications and Interfaces with Oral Tissues (1st ed). Cambridge: Woodhead Publishing Series in Biomaterials; 2020.
5. Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest trends in surface modification for dental implantology: innovative developments and analytical applications. Pharmaceutics. 2022;14(2):1–38. Doi: 10.3390/pharmaceutics14020455
6. Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental implant nano-engineering: Advances, limitations and future directions. Nanomaterials. 2021;11(10):1–26. Doi: https://doi.org/10.3390/nano11102489
7. Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, et al. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater. 2023;27:15–57. Doi: https://doi.org/10.1016/j.bioactmat.2023.03.006
8. Al-Radha ASD. The influence of different acids etch on dental implants titanium surface. IOSR Journal of Dental and Medical Sciences. 2016; 15(08): 87–91. Doi:10.9790/0853-1508098791
9. Alkentar R, Kladovasilakis N, Tzetzis D, Mankovits T. Effects of pore size parameters of titanium additively manufactured lattice structures on the osseointegration process in orthopedic applications: a comprehensive review. Crystals. 2023;13(1):113. Doi: https://doi.org/10.3390/cryst13010113
10. Zaid MB, O’Donnell RJ, Potter BK, Forsberg JA. Orthopaedic osseointegration: state of the art. J Am Acad Orthop Surg. 2019;27(22): 977–85. Doi: 10.5435/JAAOS-D-19-00016
11. Szmukler-Moncler S, Blus C, Schwarz DM, Orrù G. Characterization of a macro and micro-textured titanium grade 5 alloy surface obtained by etching only without sandblasting. Materials. 2020;13(22):1–11. Doi: 10.3390/ma13225074
12. Nicholson JW. Titanium Alloys for dental implants: a review. Prosthesis. 2020;2(2):100–16. Doi: https://doi.org/10.3390/prosthesis2020011
13. Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, et al. The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med. 2021;10(8):1641. Doi: 10.3390/jcm10081641
14. Schupbach P, Glauser R, Bauer S. Al2O3 particles on titanium dental implant systems following sandblasting and acid etching-process. International Journal of Biomaterials. 2019;2019(5):1-11. Doi: https://doi.org/10.1155/2019/6318429
15. Yurttutan ME, Keskin A. Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration. BMC Oral Health. 2018;18(1):47. Available from: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-018-0509-3
16. Ozel GS, Inan O, Acar AS, Iyidogan GA, Dolanmaz D, Yildirim G. Stability of dental implants with sandblasted and acid-etched (SLA) and modified (SLActive) surfaces during the osseointegration period. J Dent Res Dent Clin Dent Prospects. 2021;15(4):226–31. Doi: 10.34172/joddd.2021.037
17. Kirk PC, Chandran R, Lott J. Late osseointegration failure of implant case. Journal of Case Reports in Dental Medicine. 2021;3(2):34–9. Doi: https://doi.org/10.20956/jcrdm.v3i2.141
18. Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and osseointegration. Periodontol. 2019; 79(1):178–89. Doi:10.1111/prd.12254.
19. Anbarzadeh E, Mohammadi B. Investigation of the effects of sandblasting, acid etching, and anodizing parameters in the SLA + anodizing on the surface treatment of titanium dental implant fixtures. The Physics of Metals and Metallography. 2023;124(13):1606–19. Doi:10.1134/S0031918X23600793
20. Bammidi R, Prasad KS. Ti-6AL-4V as dental implant. Journal of Dentistry and Oral Medicine. 2020;2(1):14–18. EAS J Dent Oral Med. 20020;2(1):14-8. Doi: 10.36349/easjdom.2020.v02i01.003
21. Chauhan P, Koul V, Bhatnagar N. Effect of acid etching temperature on surface physiochemical properties and ytocompatibility of Ti6Al4V ELI alloy. Materials Research Express. 2019;6(10):1-10. Doi:10.1088/2053-1591/ab3ac5
22. Sasikumar Y, Indira K, Rajendran N. Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. Journal of Bio- and Tribo-Corrosion. 2019; 5(2):36. Doi:10.1007/s40735-019-0229-5
23. Jemat A, Ghazali MJ, Razali M, Otsuka Y. Effects of surface treatment on titanium alloys substrate by acid etching for dental implant. Materials Science Forum. 2015;819:347–52. Doi:10.4028/www.scientific.net/MSF.819.347
24. Śmielak B, Klimek L, Krześniak K. Effect of sandblasting parameters and the type and hardness of the material on the number of embedded Al2O3 grains. Materials (Basel). 2023;16(13):4783. Doi: https://doi.org/ 10.3390/ma16134783
25. Begg H, Riley M, Lovelock HV. Mechanization of the grit blasting process for thermal spray coating applications: a parameter study. J Therm Spray Technol. 2015;25(1):12–20. Doi:10.31399/asm.cp.itsc2015p0577
26. Kohler R, Sowards K, Medina H. Numerical model for acid-etching of titanium: Engineering surface roughness for dental implants. J Manuf Process. 2020; 59(7): 113–121. Doi:10.1016/j.jmapro.2020.09.014
27. Nicolas-Silvente AI, Velasco-Ortega E, Ortiz-Garcia I, Monsalve-Guil L, Gil J, Jimenez-Guerra A. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials. 2020;13(2):314. Materials. 2020;13(2):314. Doi:https://doi.org/10.3390/ma13020314
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Albert Albert, Christian A. Prawira, Fergy C. Maitimu, Lia H. Andayani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
COPYRIGHT
Authors who publish with this journal agree to the following terms:
Authors hold their copyright and grant this journal the privilege of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that permits others to impart the work with an acknowledgment of the work's origin and initial publication by this journal.
Authors can enter into separate or additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (for example, post it to an institutional repository or publish it in a book), with an acknowledgment of its underlying publication in this journal.
Authors are permitted and encouraged to post their work online (for example, in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).



