Potensi Antibakteri Prebiotik Buah Naga dalam Regenerasi Periodontal
DOI:
https://doi.org/10.35790/eg.v14i2.63671Keywords:
prebiotik buah naga; regenerasi periodontal; aktivitas antibakterial; bovine pericardium membraneAbstract
Abstract: Periodontal tissue regeneration remains a major challenge in dentistry due to damage caused by periodontal disease. Developing natural biomaterials with osteoconductive, anti-inflammatory, and antibacterial properties is essential to support the healing process. This study aimed to compare the antibacterial activity of dragon fruit (Hylocereus spp.) prebiotics with commercial bovine pericardium membrane using an in vitro approach. Antibacterial activity against Porphyromonas gingivalis was assessed using the disc diffusion method. Dragon fruit prebiotics, obtained through organic solvent extraction, were tested against sterilized bovine pericardium membranes as controls. The results showed that the dragon fruit prebiotics had a greater mean inhibition zone of 13.76 mm against P. gingivalis compared to of bovine pericardium membranes which was 10.14 mm. In conclusion, dragon fruit prebiotics are positioned as a promising, cost-effective, and biocompatible alternative compared to bovine pericardium membranes for periodontal regeneration. However, further in vivo studies are necessary to validate their safety and clinical efficacy.
Keywords: dragon fruit prebiotics; periodontal regeneration; antibacterial activity; bovine pericardium membrane
Abstrak: Regenerasi jaringan periodontal tetap menjadi tantangan utama dalam kedokteran gigi, terutama terkait kerusakan akibat penyakit periodontal. Upaya pengembangan biomaterial alami dengan potensi osteokonduktif, anti-inflamasi, dan antibakteri menjadi penting untuk mendukung penyembuhan jaringan. Penelitian ini menggunakan pendekatan in vitro untuk membandingkan efek antibakteri prebiotik buah naga (Hylocereus spp.) dengan bovine pericardium membrane komersial. Uji antibakteri terhadap Porphyromonas gingivalis dilakukan dengan metode difusi cakram. Prebiotik diperoleh melalui ekstraksi pelarut organik, sedangkan bovine pericardium membrane disterilkan dan digunakan sebagai kontrol. Hasil penelitian memperlihatkan prebiotik buah naga menunjukkan rerata zona hambat 13,76 mm terhadap P. gingivalis, lebih besar dibandingkan bovine pericardium membrane (10,14 mm). Hal ini mendukung bahwa prebiotik buah naga memiliki aktivitas antibakteri yang dapat memperkuat perannya sebagai biomaterial alternatif. Simpulan penelitian ini ialah prebiotik buah naga merupakan kandidat potensial untuk terapi regeneratif periodontal dengan biaya lebih rendah dibandingkan bovine pericardium membrane. Penelitian in vivo lebih lanjut masih diperlukan untuk mengonfirmasi keamanan dan efektivitasnya dalam aplikasi klinis.
Kata kunci: prebiotik buah naga; regenerasi periodontal; aktivitas antibakterial; bovine pericardium membrane
References
1. Shklover J, McMasters J, Alfonso-García A, Higuita ML, Panitch A, Marcu L, et al. Bovine pericardial extracellular matrix niches modulate human aortic endothelial cell phenotype and function. Sci Rep. 2019;9(1):6120. Doi: https://doi.org/10.1038/s41598-019-53230-1
2. Yamanaka JS, Oliveira AC, Bastos AR, Fernandes EM, Reis RL, Correlo VM, et al. Collagen membranes from bovine pericardium for long bone defect treatment. J Biomed Mater Res B Appl Biomater. 2022;111(2):261-70. Doi: https://doi.org/10.1016/j.bonr.2020.100304
3. Bianchi S, Bernardi S, Simeone D, Torge D, Macchiarelli G, Marchetti E. Human periodontal ligament fibroblast proliferation and morphology on bovine pericardium membrane: an in vitro study. Materials (Basel). 2022;15(23):8284. Doi: https://doi.org/10.3390/ ma15238284
4. Derar A, Hosni A, ElMohandes W. Simultaneous implant placement with bone grafting to thin buccal bone plates using xenograft in mandibular posterior sites with inadequate width. Al-Azhar Journal of Dental Science. 2023;26(3):363-369. Doi: https://doi.org/10.21608/ajdsm.2021.95369.1239
5. Devitaningtyas N, Syaify A, Herawati D. Combination of 10% propolis with carbonated hydroxyapatite on RANKL expression in rabbit alveolar bone. J Dent Indones. 2020;53(4):212–6. Doi: https://doi.org/10.20473/j.djmkg.v53.i4.p212-216.
6. Han J, Ma B, Liu H, Wang T, Wang F, Xie C, et al. Hydroxyapatite nanowire-modified polylactic acid membranes play dual barrier/osteoinductive roles and promote bone regeneration in rat mandibular defect model. Journal of Biomedical Materials Research Part A. 2018;106(12):3099-110. Doi: https://doi.org/10.1002/jbm.a.36502
7. Pajoumshariati S, Shirali H, Yavari SK, Sheikholeslami SN, Lotfi G, Abbas FM, et al. GBR membranes from novel polyester co-polymer (butylene succinate-co-glycolate) for periodontal applications. Sci Rep. 2018;8(1):10777. Doi: https://doi.org/10.1038/s41598-018-25952-1
8. Aeran H, Kumar V, Seth J, Aeran M. Barrier membranes in implant dentistry: a comprehensive review. International Journal of Oral Health Dentistry. 2023;9(3):158-64. Doi: https://doi.org/10.18231/j.ijohd.2023.031
9. Nishikito DF, Borges ACA, Laurindo LF, Otoboni AMMB, Direito R, Goulart RdÁ, et al. Anti-inflammatory, antioxidant and other health effects of dragon fruit and potential delivery systems for its bioactive compounds. Pharmaceutics (Basel). 2023;15(1):159. Doi: https://doi.org/10.3390/pharmaceutics15010159
10. Yuna P, Chiuman L, Ginting CN. Anti-inflammatory effect of red dragon fruit (Hylocereus polyrhizus) peel on male rats. J Pharm Sci Indones. 2023;10(1):22-29. Doi: https://doi.org/10.20473/jfiki.v10i12023.22-29
11. Le NL. Functional compounds in dragon fruit peel and potential health benefits: a review. International Journal of Food Science and Technology. 2021;57(5):2571–80. Doi: https://doi.org/10.1111/ijfs.15111
12. Ferroni L, Gardin C, Bellin G, Vindigni V, Mortellaro C, Zavan B. Bovine pericardium membranes as novel tool for mesenchymal stem cell commitment. J Tissue Eng Regen Med. 2019;13(10):1805-14. Doi: https://doi.org/10.1002/term.2931
13. Murdock KW, Martin C, Sun W. Mechanical characterization of pericardial tissue using planar biaxial tension and bending deformation. Journal of the Mechanical Behavior of Biomedical Materials. 2018;77:148-56. Doi: https://doi.org/10.1016/j.jmbbm.2017.08.039
14. Yuslianti ER, Widyasari R, Farid KM. Ethanolic extract of super red dragon fruit (Hylocereus costaricensis) peel inhibits Enterococcus faecalis ATCC 29212 in root canal treatment. Padjadjaran Journal of Dental Researchers and Students. 2021;5(1):24-9. Doi: https://doi.org/10.24198/pjdrs.v5i1.28952
15. Missa KT, Nahak RTB O, Kia KW. Microbiological quality of beef se’i cured with red dragon fruit (Hylocereus polyrhizus) peel extract. Journal of Animal Science. 2020;5(3):44-7. Doi: https://doi.org/10.32938/ja.v5i3.795
16. Ng LC, Tan JS, Fauziah TA. Effect of ultraviolet-C irradiation on postharvest quality and decay reduction of dragon fruit (Hylocereus polyrhizus). Malaysian Applied Biology. 2022;51(1):119-28. Doi: https://doi.org/10.55230/mabjournal.v51i1.2150
17. Ruangwong O-U, Kunasakdakul K, Wonglom P, Dy K.S., Sunpapao A. Morphological and molecular study of rare mucoralean species causing flower rot in Hylocereus polyrhizus. Phytopathol. 2022;170(4):214-20. Doi: https://doi.org/10.1111/jph.13072
18. Som AM, Ahmat N, Hamid HAA, Azizuddin N. Comparative study of leaves and peel of Hylocereus undatus (white dragon fruit) on antioxidant activity and phenolic content. Heliyon. 2019;5(2):e01244. Doi: https://doi.org/10.1016/j.heliyon.2019.e01244
19. Liana L, Rizal R, Widowati W, Fioni F, Akbar K, Fachrial E, et al. Antioxidant and anti-hyaluronidase activities of dragon fruit peel extract and kaempferol-3-O-rutinoside. Jurnal Kedokteran Brawijaya. 2019;30(4):247-252. Doi: https://doi.org/10.21776/ub.jkb.2019.030.04.3
20. Attar ŞH, Gündeşli MA, Urün I, Kafkas S, Kafkas NE, Erçışlı S, et al. Nutritional analysis of red-purple- and white-fleshed pitaya (Hylocereus) species. Molecules. 2022;27(3):808. Doi: https://doi.org/10.3390/molecules27030808
21. Nurniza N, Hendiani I, Komara I. Effect of green tea (Camellia sinensis) gel on total antioxidant capacity (TAOC) as adjunctive treatment to scaling and root planing in chronic periodontitis. Padjadjaran Journal of Dentistry. 2020;32(2):56-161. Doi: https://doi.org/10.24198/jkg.v32i2.27771
22. Panjaitan RGP, Novitasari N. Antidiabetic activity of ethanolic extract of red dragon fruit (Hylocereus polyrhizus) peel in diabetic rats. Pharmacogn J. 2021;13(5):1079-85. Doi: https://doi.org/10.5530/pj.2021.13.140
23. Paśko P, Galanty A, Zagrodzki P, Luksirikul P, Barasch D, Nemirovski A. Dragon fruits as a natural polyphenol reservoir with chemopreventive properties. Molecules. 2021;26(8):2158. Doi: https://doi.org/10.3390/molecules26082158
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Febria D. K. Hari, Dwi W. Indrawati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
COPYRIGHT
Authors who publish with this journal agree to the following terms:
Authors hold their copyright and grant this journal the privilege of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that permits others to impart the work with an acknowledgment of the work's origin and initial publication by this journal.
Authors can enter into separate or additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (for example, post it to an institutional repository or publish it in a book), with an acknowledgment of its underlying publication in this journal.
Authors are permitted and encouraged to post their work online (for example, in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).



