Dari Konsep Satu Jenis Patogen S. mutans ke Interaksi Mikrobioma - Perubahan Paradigma untuk Metode Pencegahan ECC yang Lebih Efektif
DOI:
https://doi.org/10.35790/eg.v14i1.64023Keywords:
early childhood caries; mikrobioma oral; Streptococcus mutans; bakteri protektif; biofilmAbstract
Abstract: Early childhood caries (ECC) remains a progressive and multifactorial oral health problem in children. For decades, Streptococcus mutans has been regarded as the primary pathogen due to its acidogenicity, aciduricity, and strong biofilm-forming ability. However, emerging evidence indicates that ECC is a polymicrobial disease influenced by complex interactions within the oral microbial community. Dental biofilm functions as a dynamic ecosystem where microorganisms interact, exchange metabolites, and adapt to environmental changes. Disruption of this ecological balance can shift the biofilm from a healthy to a dysbiotic and cariogenic state. Other species such as S. wiggsiae, utilizing the fructose-6-phosphate shunt pathway and S. sputigena, which forms “superstructure” biofilms with S. mutans have been shown to enhance ECC severity. Conversely, protective bacteria including Rothia spp., C. matruchotii, S. sanguinis, and S. oralis help maintain plaque pH and biofilm balance. Understanding the dynamic interplay between pathogenic and protective bacteria underscores the need for microbiome-based preventive strategies, such as probiotics, nitrate supplementation, and personalized risk assessment. This approach may provide a more effective and sustainable prevention method compared with conventional strategies. In conclusion, by understanding ECC as a polymicrobial disease that is influenced by the dynamic of pathogenic and protective bacteria, prevention strategies based on microbioma can be chosen as a more effective solution than the conventional strategies focusing solely on the elimination of S. mutans.
Keywords: early childhood caries; oral microbiome; protective bacteria; biofilm.
Abstrak: Early childhood caries (ECC) merupakan masalah kesehatan gigi anak yang progresif dan multifaktorial. Selama beberapa dekade, Streptococcus mutans dianggap sebagai patogen utama karena sifat asidogenik, asidurik, dan kemampuannya membentuk biofilm. Bukti terkini menunjukkan bahwa ECC merupakan penyakit polimikroba yang dipengaruhi oleh interaksi kompleks komunitas oral. Biofilm gigi berperan penting sebagai ekosistem dinamis tempat bakteri berinteraksi, bertukar metabolit, dan beradaptasi terhadap perubahan lingkungan. Ketidakseimbangan dalam komunitas biofilm dapat menggeser kondisi dari sehat menjadi disbiotik dan kariogenik. Spesies lain seperti S. wiggsiae dengan jalur fructose-6-phosphate shunt, S. sputigena yang membentuk “superstructure” biofilm bersama S. mutans, terbukti meningkatkan keparahan ECC. Sebaliknya, bakteri protektif seperti Rothia spp., C. matruchotii, S. sanguinis, dan S. oralis berperan menjaga pH plak dan keseimbangan biofilm. Pemahaman terhadap dinamika antara bakteri patogen dan protektif ini menekankan perlunya strategi pencegahan berbasis mikrobioma, seperti probiotik, suplementasi nitrat, dan analisis risiko personal. Simpulan studi ini ialah dengan memahami ECC sebagai penyakit polimikroba yang dipengaruhi oleh dinamika bakteri patogen dan protektif maka dapat dilakukan pencegahan yang berbasis mikrobioma yang lebih efektif dibandingkan strategi konvensional yang hanya berfokus pada eliminasi S. mutans.
Kata kunci: early childhood caries; mikrobioma oral; Streptococcus mutans; bakteri protektif; biofilm
References
1. Livne S, Simantov S, Rahmanov A, Jeffet U, Sterer N. Hydroxyethyl cellulose promotes the mucin retention of herbal extracts active against Streptococcus mutans. Materials. 2022;15(13):4652. Doi:10.3390/ma15134652
2. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90(3):294–303. Doi:10.1177/0022034510379602
3. Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10):e47722. Doi:10.1371/journal.pone.0047722
4. Prabhu Matondkar SP, Yavagal C, Kugaji M, Bhat KG. Quantitative assessment of Scardovia wiggsiae from dental plaque samples in severe early childhood caries and caries-free children. Anaerobe. 2020;62:102110. Doi:10.1016/j.anaerobe.2019.102110
5. Tantikalchan S, Mitrakul K. Association between Bifidobacterium and Scardovia wiggsiae and caries-related factors in severe early childhood caries and caries-free children: a quantitative real-time PCR study. Eur Arch Paediatr Dent. 2022;23(3):437–47. Doi:10.1007/s40368-022-00702-0
6. Tanner ACR, Mathney JMJ, Kent RL, Chalmers NI, Hughes CV, Loo CY, et al. Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol. 2011;49(4):1464–74. Doi:10.1128/JCM.02427-10
7. Zhang J, Xu X. Recent research progress in the relationship between Lactobacillus and dental caries. J Sichuan Univ Med Sci. 2023;54(2):xxx–xxx. Chinese. Doi:10.12182/20220960103
8. Kressirer CA, Chen T, Lake Harriman K, Frias-Lopez J, Mira A, Belda-Ferre P, et al. Ultrastructure and function of Scardovia wiggsiae biofilms. Microorganisms. 2020;8(6):807. Doi:10.3390/microorganisms8060807
9. Busscher HJ, Bos R, van der Mei HC. Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Lett. 1995 May 15;128(3):229-34. doi: 10.1111/j.1574-6968.1995.tb07529.x
10. Kameda M, Abiko Y, Washio J, Tanner ACR, Kressirer CA, Mizoguchi I, Takahashi N. Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Front Microbiol. 2020;11:479. Doi:10.3389/fmicb.2020.00479
11. Palframan RJ, Gibson GR, Rastall RA. Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. J Appl Microbiol. 2003;95(2):353–60. Doi:10.1046/j.1472-765X.2003.01398.x
12. Modesto M, Checcucci A, Mattarelli P. Identification of bifidobacteria by the phosphoketolase assay. Methods Mol Biol. 2021;2278:141–8. Doi:10.1007/978-1-0716-1274-3_12
13. Kressirer CA, Smith DJ, King WF, Dobeck JM, Starr JR, Tanner ACR. Scardovia wiggsiae and its potential role as a caries pathogen. J Oral Biosci. 2017;59(1):1–7. Doi:10.1016/j.job.2017.05.002
14. Kanasi E, Johansson I, Lu SC, Kressirer CA, Strausbaugh LD, Tanner ACR. Microbial risk markers for childhood caries in pediatric populations. Int J Oral Sci. 2010;2(1):24–31. Doi:10.1177/0022034509360010.
15. Rath CB, Schirmeister F, Figl R, Seeberger PH, Schäffer C, Kolarich D. Flagellin glycoproteomics of the periodontitis associated pathogen Selenomonas sputigena reveals previously not described O-glycans and rhamnose fragment rearrangement occurring on the glycopeptides. Mol Cell Proteomics. 2018;17(4):721-36. Doi: 10.1074/mcp.RA117.000394
16. Cho H, Ren Z, Divaris K, Roach J, Lin BM, Liu C, et al. Selenomonas sputigena acts as a pathobiont mediating spatial structure and biofilm virulence in early childhood caries. Nat Commun. 2023;14(1):2919. Doi:10.1038/s41467-023-38346-3
17. Johansson I, Witkowska E, Kaveh B, Lif Holgerson P, Tanner ACR. The microbiome in populations with a low and high prevalence of caries. J Dent Res. 2016;95(1):80–6. Doi:10.1177/0022034515609554
18. Burne RA, Marquis RE. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett. 2000;193(1):1–6. Doi:10.1111/j.1574-6968.2000.tb09393.x
19. Shu M, Morou-Bermudez E, Suárez-Pérez E, Rivera-Miranda C, Browngardt CM, Chen Y, et al. The relationship between dental caries status and dental plaque urease activity. Oral Microbiol Immunol. 2007;22(1):61–6. Doi:10.1111/j.1399-302X.2007.00325.x
20. Kleinberg I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med. 2002;13(2):108–25. Doi:10.1177/154411130201300202
21. Rosier BT, Marsh PD, Mira A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J Dent Res. 2018;97(4):371–80. Doi:10.1177/0022034517742139
22. Rosier BT, Buetas E, Moya-Gonzalvez EM, Artacho A, Mira A. Nitrate as a potential prebiotic for the oral microbiome. Front Microbiol. 2020;11:555465. Doi:10.3389/fmicb.2020.555465
23. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA. 2016;113(6):E791–800. Doi:10.1073/pnas.1522149113
24. Cross KL, Chirania P, Xiong W, Beall CJ, Elkins JG, Giannone RJ, et al. Insights into the evolution of host adaptation in the human oral microbiome. Genome Biol Evol. 2018;10(4):915–28. Doi:10.1093/gbe/evy031
25. Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol. 2005;187(21):7193–203. Doi:10.1128/JB.187.21.7193-7203.2005
26. Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol. 2010;8(7):471–80. Doi:10.1038/nrmicro2381
27. Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011;90(11):1271–8. Doi:10.1177/0022034511399096
28. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–59. Doi:10.1038/s41579-018-0089-x
29. Zhang Y, Chen Y, Diao C, Lin H, Zhu J, Sun R, et al. Exploration of severe early childhood caries microbiota through a novel developed nutrient-enriched microbiological medium, high-throughput 16S rRNA sequencing and culturomics. PeerJ. 2024;12:e18312. Doi:10.7717/peerj.18312
30. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):S12–22. Doi:10.1111/jcpe.12679
31. Laleman I, Teughels W. Probiotics in the dental practice: a review. Quintessence Int. 2015;46(3):255–64. Doi:10.3290/j.qi.a33182
32. Devine DA, Marsh PD, Meade J. Modulation of host responses by oral commensal bacteria. J Oral Microbiol. 2015;7:26941. Doi:10.3402/jom.v7.26941
33. Mazurel D, Carda-Diéguez M, Langenburg T, Žiemytė M, Johnston W, Martínez CP, et al. Nitrate and a nitrate-reducing Rothia aeria strain as potential prebiotic or synbiotic treatments for periodontitis. NPJ Biofilms Microbiomes. 2023;9(1):10. Doi:10.1038/s41522-023-00406-3
34. Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One. 2014;9(3):e88645. Doi:10.1371/journal.pone.0088645
35. Lundberg JO, Carlström M, Weitzberg E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 2018;28(1):9–22. Doi:10.1016/j.cmet.2018.06.007
36. Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, et al. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome. 2013;1(1):25. Doi:10.1186/2049-2618-1-25
37. Marsh PD. In sickness and in health—what does the oral microbiome mean to us? An ecological perspective. Adv Dent Res. 2018;29(1):60–5. Doi:10.1177/0022034517735295
38. Yang F, Zeng X, Ning K, Liu KL, Lo CC, Wang W et al. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J. 2012;6(1):1–10. Doi:10.1038/ismej.2011.71
39. Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe. 2015;18(3):296–306. Doi:10.1016/j.chom.2015.08.005
40. Xu X, He J, Xue J, Wang Y, Li K, Zhang K, et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol. 2015;17(3):699–710. Doi:10.1111/1462-2920.12502
41. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun. 2022;13(1):342. Doi:10.1038/s41467-022-28034-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Paulina N. Gunawan, Endang W. Bachtiar, Mochamad F. Rizal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
COPYRIGHT
Authors who publish with this journal agree to the following terms:
Authors hold their copyright and grant this journal the privilege of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that permits others to impart the work with an acknowledgment of the work's origin and initial publication by this journal.
Authors can enter into separate or additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (for example, post it to an institutional repository or publish it in a book), with an acknowledgment of its underlying publication in this journal.
Authors are permitted and encouraged to post their work online (for example, in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).



