ANALISIS RESPONS DINAMIK PONDASI TIANG PANCANG KELOMPOK AKIBAT BEBAN DINAMIK MESIN PADA GETARAN VERTIKAL DAN HORIZONTAL

Sjachrul Balamba

Fakultas Teknik Jurusan Teknik Sipil Universitas Sam Ratulangi Manado e-mail : balambas@ymail.com

Abstrak

Pondasi mesin merupakan elemen struktur yang digunakan untuk meneruskan beban dari mesin di atas pondasi ke dalam tanah. Perencanaan pondasi mesin lebih kompleks daripada pondasi yang hanya menerima beban statis. Selain perlu memperhitungkan gaya statis yang berasal dari berat mesin dan berat pondasi, perencanaan pondasi mesin juga harus memperhitungkan gaya dinamis yang dihasilkan oleh mesin. Dua hal yang sangat penting dalam perencanaan pondasi mesin yaitu masalah tanah pendukung dan frekuensi getaran. Parameter tanah yang dibutuhkan antara lain adalah modulus geser tanah dinamis, redaman tanah dan angka poison. Sedangkan getaran mesin yang sangat menentukan adalah frekuensi getaran. Pada penelitian ini dianalisis pengaruh modulus geser tanah dan frekuensi getaran terhadap respons dinamik pondasi tiang pancang kelompok akibat getaran vertical dan horizontal. Hasil yang diperoleh menunjukkan bahwa pada getaran vertikal penambahan frekuensi tidak mempengaruhi besarnya amplitudo getaran. Pada getaran horizontal penambahan frekuensi, makin besar frekuensi makin besar amplitudo getaran. Pada hubungan antara modulus geser tanah dengan amplitudo getaran terlihat bahwa terdapat pengaruh dari penambahan modulus geser pada amplitudo getaran akibat getaran vertikal, walaupun pengaruhnya sangat kecil. Pada hubungan antara modulus geser tanah dengan amplitude getaran terlihat bahwa terdapat pengaruh dari penambahan modulus geser pada amplitudo getaran akibat getaran horizontal, makin besar modulus geser tanah makin kecil amplitudo getaran yang terjadi. Penambahan beban vertikal dan beban horizontal akan menyebabkan bertambah besarnya amplitudo getaran.

Kata kunci: pondasi tiang pancang, modulus geser, frekuensi getaran

PENDAHULUAN

Perencanaan pondasi mesin lebih kompleks dibandingkan dengan perencanaan pondasi yang hanya dibebani oleh beban statis. Pada pondasi mesin kita harus mempertimbangkan beban dinamis yang ditimbulkan oleh bekerjanya mesin. Beban dinamis ini kemudian disalurkan ke pondasi yang mendukung mesin tersebut.

Dalam mendesain pondasi mesin yang berkaitan dengan getaran periodik masalah penurunan perlu menjadi pertimbangan. Getaran atau vibrasi cenderung memadatkan tanah yang non plastis sehingga terjadi penurunan. Pengaruh maksimal terjadi pada material berbutir kasar yang bersih.

Setiap sistim fisik memiliki frekuensi karakteristiknya masing-masing yang dikenal sebagai frekuensi natural. Frekuensi natural didefinisikan sebagai frekuensi pada saat sistem akan bergetar ketika mengalami getaran bebas. Pada waktu frekuensi yang bekerja pada sebuah mesin mendekati frekuensi natural pondasinya, amplitudo cenderung menjadi besar.

Sistem dikatakan berada dalam keadaan resonansi ketika dua frekuensi tersebut menjadi sama. Timbulnya resonansi dan efek lanjutannya dapat meningkatkan amplitudo getaran yang merupakan salah satu masalah paling umum pada pondasi mesin. Pada resonansi ditemukan bahwa sebagai tambahan pada amplitudo yang berlebihan/lebih besar terjadi juga settlemen yang besar.

Frekuensi yang terjadi ketika nilai amplitudo mencapai nilai maksimum disebut frekuensi resonansi. Dalam desain pondasi-pondasi mesin, kriteria yang penting adalah menghindari resonansi dengan maksud bahwa amplitudo getaran tidak akan besar.

Permasalahan

Pondasi mesin dengan tiang pancang yang memikul gaya dinamik seperti mesin harus didesain seteliti mungkin agar tidak terjadi hal-hal yang merugikan, baik kepada pekerja maupun pada mesin. Parameter yang perlu diperhatikan adalah modulus geser tanah dan frekuensi getaran. Makalah ini mengangkat kedua masalah tersebut.

KAJIAN TEORI

Berdasarkan pada kriteria perencanaan pondasi-pondasi mesin, maka mesin-mesin dapat digolongkan sebagai berikut:

- a. Mesin-mesin yang menghasilkan gayagaya tumbukan, misalnya palu-palu pancang tempa, mesin-mesin press.
- Mesin-mesin yang menghasilkan gayagaya berkala, misalnya mesin-mesin torak seperti kompresor torak dan mesin diesel.
- c. Mesin-mesin kecepatan tinggi, misalnya turbin gas dan kompresor rotary.
- d. Mesin-mesin macam lainnya

Berdasarkan bentuk strukturnya, pondasipondasi mesin digolongkan sebagai berikut:

- a. Pondasi-pondasi jenis blok, yang terdiri dari sebuah landasan kaki dari beton.
- b. Pondasi-pondasi jenis kotak atau jenis sumuran, terdiri dari rongga blok beton yang menunjang mesin pada puncaknya.
- Pondasi-pondasi jenis dinding, terdiri dari sepasang dinding yang mendukung mesin-mesin pada puncak pondasipondasi tersebut.
- d. Pondasi-pondasi jenis kerangka, bangunan kerangka yang membentuk landasan dudukan dari mesin-mesin yang terdiri dari kolom-kolom vertikal yang memikul mesin pada puncaknya.

Srinivasulu membagi mesin-mesin berdasarkan frekuensi operasinya dalam 3 kategori:

- a. Frekuensi rendah sampai sedang (0-500 rpm), misalnya mesin-mesin torak dan pengempa
- b. Frekuensi sedang sampai tinggi (300-1000 rpm), terdiri mesin-mesin gas atau mesin diesel
- Frekuensi sangat tinggi (> 1000 rpm), ini mencakup mesin-mesin ruang pembakaran dalam, motor-motor elektris dan rangkaian generator turbo

Pondasi mesin menurut tinjauan perencanaan harus memiliki syarat-syarat sebagai berikut:

- a. Pondasi seharusnya mampu memikul beban-beban luar atau beban-beban yang dilimpahkan tanpa menyebabkan keruntuhan "geser" atau keruntuhan "patah"
- b. Penurunan pondasi seharusnya berada dalam batas-batas yang dizinkan.
- Pusat gravitasi gabungan antara mesin dan pondasi seharusnya berada di garis vertikal yang sama dengan pusat gravitasi bidang alas.
- d. Sebaiknya tidak terjadi resonansi.
- e. Semua bagian dari mesin yang bekerja dan berputar bolak-balik harus seimbang.
- f. Pondasi harus didesain sedemikian rupa sehingga tidak ada perubahan frekuensi naturalnya.

Dalam mendesain pondasi mesin, beberapa aturan umum yang harus diperhatikan agar menghindari kemungkinan terjadinya resonansi:

- a. Frekuensi resonansi dari sistem pondasitanah harus lebih kecil dari setengah frekuensi operasi mesin ($F_{resonansi} < 0.5$ F_{mesin}) untuk mesin lebih dari 1000 rpm.
- b. Untuk mesin kecepatan rendah (350-400 rpm), Frekuensi resonansi dari sistem pondasi-tanah harus lebih besar dari dua kali frekuensi operasi mesin ($F_{resonansi} > 2$ F_{mesin})
- a. Frekuensi resonansi dan frekuensi alami dari pondasi dapat dikurangi dengan menaikkan massa sistem (m), dengan mengurangi luas sentuh dasar (r_o), dan dengan mengurangi modulus geser G (mengurangi konstanta pegas k_i).

Data perencanaan yang diperlukan pada pondasi mesin:

- a. Tenaga mesin dan kecepatan operasi
- b. Besar dan posisi beban statis mesin dan pondasi
- c. Besar dan kedudukan beban dinamis yang terjadi
- d. Data-data khusus yang ditambahkan oleh pembuat mesin seperti amplitude yang diizinkan, dll.
- e. Data tanah

Amplitudo yang diizinkan

Amplitudo izin dari pondasi mesin ditentukan oleh kepentingan relatif dari mesin dan kepekaan dari struktur sekitar terhadap getaran.

Tabel 1. Amplitudo izin

No	Туре	Amplitudo
		Izin (cm)
1	Mesin Kecepatan Rendah	0,02-0,025
	(500 rpm)	
2	Pondasi "Hammer mill"	0,1-0,12
3	Mesin Kecepatan Tinggi	
	a. 3000 rpm	
	 Getaran vertical 	0,002-0.003
	2. Getaran horizontal	0,004-0,005
	b. 1500 rpm	
	 Getaran vertical 	0,004-0,006
	2. Getaran horizontal	0,007-0,009

Sumber: *Handbook of Machine Foundation*, P. Srinavasulu, C. V. Vaidyanathan

Parameter Tanah Untuk Analisis Dinamis Mesin

Dalam merencanakan parameterparameter dari lapisan-lapisan tanah tersebut, ditinjau dari literatur-literatur yang ada. Hal ini dilakukan karena parameter-parameter tanah seperti modulus elastisitas (Es), Moduls geser (G), dan angka poisson (μ) yang diperlukan untuk perhitungan dalam analisis beban dinamis mesin tidak diberikan.

Parameter-parameter tersebut dapat di lihat pada tabel 2 dan 3

Tabel 2. Modulus Elastisitas

Jenis Tanah	Moduls elastisitas
	(kg/cm²)
Lempung	-
Sangat lunak	3 – 30
Lunak	20 - 40
Sedang	45 – 90
Keras	70 - 200
Berpasir	300 – 425
Pasir	
Berlanau	50 – 200
Tidak Padat	100 - 250
Padat	500 – 1000
Pasir dan krikil	
Padat	800 - 2000
Tidak Padat	500 – 1400
Lanau	20 – 200
Loess	150 - 600
Serpih	1400 - 14000
Kayu	80.000 - 100.000
Beton	200.000 - 300.000
Baja	2.150.000

Sumber: Bowles, 1977

Tabel 3. Angka poisson

Jenis Tanah	Angka Poisson
Lempung jenuh 0,4 – 0,5	0,4-0,5
Lempung tak jenuh $0.1 - 0.3$	0,1-0,3
Lempung berpasir $0.2 - 0.3$	0,2-0,3
Lanau 0,3 – 0,35	0,3 -
Pasir padat $0.2 - 0.4$	$0,\hat{2}-\bar{0},4$
Pasir kasar ($e = 0.4 - 0.7$)	0,15
Pasir halus (e = $0.4 - 0.7$)	0,25
Batu (agak tergantung dari	0,1-0,4
Loess 0,1 – 0,3	0,1-0,3

Sumber: Bowles,1968

Modulus Geser Tanah (G)

Modulus geser tanah dapat dihitung dengan rumus sebagai berikut :

$$G = \frac{E_s}{2(1+\mu)} \tag{1}$$

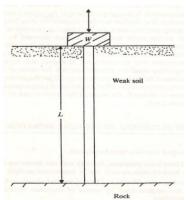
Pondasi Mesin Pada Tiang

Pada umumnya pondasi mesin akan dibenamkan pada suatu kedalaman tertentu. Jika pondasi mesin dibenamkan pada kedalaman tertentu maka amplitudo getaran yang dihasilkan akan berbeda dengan pondasi mesin yang terletak di atas tanah, hal ini dikarenakan konstanta pegas dan redaman tanah akan bertambah besar. Pondasi tiang adalah jenis pondasi tertanam yang digunakan untuk mendukung beban dinamis mesin.

Pondasi tiang yang dibenamkan ke dalam tanah dibawah sebuah mesin yang bergetar bisa digunakan untuk mempengaruhi perubahan-perubahan dalam amplitudo getaran. Efek tersebut ekivalen dengan penambahan kekakuan tanah. Pengkajian persamaan-persamaan massa tergumpal menunjukkan, penggunaan tiang pancang dapat memperkecil amplitudo karena nilai kekakuan (k) yang lebih besar serta dapat memperbesar frekuensi alami dan nilai redaman Dalam penggunaan pondasi yang menerima getaran dan goncangan, maka penggunaan pondasi tiang harus memperhatikan keadaan berikut:

 Beban yang diberikan pada pondasi berupa gaya statis dan gaya dinamis melebihi nilai-nilai tekanan tanah yang diizinkan dan penggunaan pondasi dangkal (telapak) tidaklah cukup memungkinkan untuk menerima gayagaya tersebut.

- Kondisi tanah dan muka air tanah tidak memungkinkan sehingga getaran mesin dapat mengurangi kekuatan tanah dan mengakibatkan deformasi yang besar, keadaan seperti ini mengharuskan beban dari pondasi baik statis maupun dinamis ditransferkan ke lapisan tanah yang lebih dalam.
- 3. Diperlukan untuk meningkatkan frekuensi natural dari pondasi dan untuk memperkecil amplitudo getaran.
- 4. Pertimbangan terhadap gaya gempa dan keadaan mesin.


Analisis Tiang dengan Getaran Vertikal

Secara umum tiang dapat dikelompokkan menjadi dua bagian besar :

- 1. Tiang dengan tahan ujung, tiang ini menembus lapisan tanah lunak sampai lapisan keras atau batuan. Lapisan keras atau batuan dapat dianggap kaku.
- 2. Tiang dengan tahanan gesek, ujung tiang ini tidak berada pada lapisan keras. Tiang menahan beban yang diberikan dengan cara tahanan gesek yang terjadi antara tanah dan permukaan tiang.

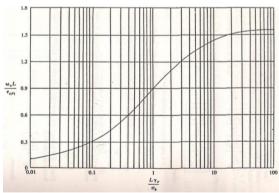
Tiang dengan tahan ujung

Tiang tertanam sampai sampai pada lapisan keras. Panjang tiang adalah L, dan beban pada tiang yang berasal dari pondasi adalah W. Permasalahan ini dapat diumpamakan sama seperti batang vertikal yang dijepit di bagian bawah dan bebas pada bagian atas.

Gambar 1. Tiang tahanan ujung

Untuk menghitung frekuensi natural dari tiang dengan tahanan ujung, terdapat tiga keadaan, yaitu: a. Jika W (berat mesin dan poer) sangat kecil (≈ 0), frekuensi natural dari getaran dapat dinyatakan sebagai berikut:

$$f_n = \frac{\omega_n}{2\pi} = \frac{1}{4L} \sqrt{\frac{E_p}{\rho_p}}$$
 (2)


dimana: f_n = frekuensi natural dari getaran, ω_n =frekuensi natural putaran, E_p =modulus elastisitas dari aterial tiang, ρ_p =masa jenis dari material tiang

 b. Jika nilai W sama dengan berat dari tiang, frekuensi natural getaran dapat dinyatakan sebagai berikut:

$$\frac{AL\gamma_p}{W} = \left[\frac{\omega_n L}{v_{c(P)}}\right] \tan \left[\frac{\omega_n L}{v_{c(P)}}\right]$$
(3)

Dimana: A= luas penampang tiang, $\gamma_p=$ berat satuan tiang, $\omega_n=$ frekuensi natural putaran, $\nu_{c(P)}=$ kecepatan perambatan gelombang dari tiang.,

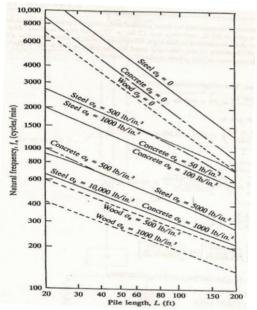
Gambar (2.10) menunjukkan hubungan antara $\omega_{\rm n} {\rm L/v_{c(P)}}$ dengan ${\rm L}\,\gamma_p/\sigma_0$ yang digunakan untuk menentukan $\omega_{\rm n}$ dan f_n dimana $f_n=\frac{\omega_n}{2\pi}$ $\sigma_0=\frac{W}{A}$

Gambar 2. grafik hubungan antara $\omega_{\rm n} L/v_{c(P)}$ dan L $\gamma_{_{\it p}}/\sigma_{_{\it 0}}$

c. Jika W besar dan berat dari tiang diabaikan, maka digunakan persamaan berikut

$$\frac{AL\gamma_p}{W} \approx \left[\frac{\omega_n L}{v_{c(P)}}\right]^2 \tag{4}$$

$$\upsilon_{c(P)} = \sqrt{\frac{E_p}{\rho_p}} = \sqrt{\frac{E_p g}{\gamma_p}} \tag{5}$$


Dimana g= percepatan gravitasi

$$\omega_n = \sqrt{\frac{E_P g}{LW}} \tag{6}$$

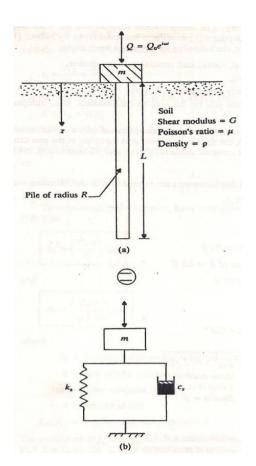
atau

$$f_n = \frac{1}{2\pi} \sqrt{\frac{E_p g}{\sigma_0 L}} \tag{7}$$

 σ_0 = tegangan axial = W/A

Gambar 3. Frekuensi resonansi untuk getaran vertikal pada tiang tahanan ujung (Richard, 1962)

Penggunaan grafik diatas harus berdasarkan jenis materialnya pada tabel 4


Tabel 4. Nilai E_p dan γ_p berdasarkan jenis material tiang

material trang		
Material	E _p (lb/in ²)	
Baja	29.4×10^6	
Beton	3.0×10^6	
Kayu	1.2×10^6	

Sumber: *Principle of soil dynamics*, Braja M Das

Tiang Dengan Tahanan Gesek

Analisis tiang dengan tahan gesek di bawah getaran vertikal berbeda dengan tahanan ujung, yang mana tidak ada beban yang di pindahakan dari batang ke tanah.

Gambar 4. Tiang tahanan gesek–Getaran vertikal

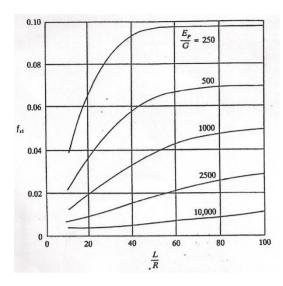
Tiang dianggap sebagai sistem massapegas-redaman. Massa m diasumsikan sebagai massa dari mesin dan pile cap. Formula matematika untuk menentukan kekakuan (k_z) dan redaman (c_z) diberikan oleh Novak (1977).

Hubungan antara k_z dan c_z diberikan oleh Novak dan El-sharnouby (1983) sebagai berikut :

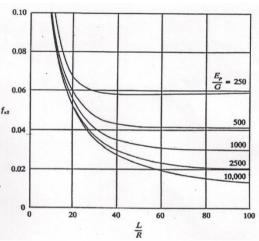
$$k_z = \left(\frac{E_P A}{R}\right) f_{z1} \tag{8}$$

$$c_z = \left(\frac{E_P A}{\sqrt{G/\rho}}\right) f_{z2} \tag{9}$$

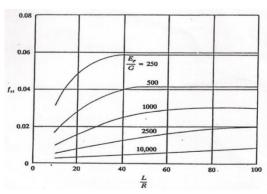
Dimana

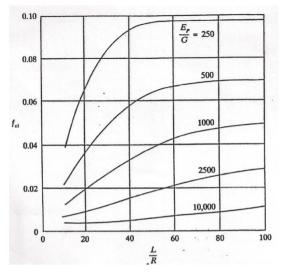

 $E_p =$ modulus elastisitas dari material tiang,

A =luas penampang tiang,


G = modulus geser tanah,

 ρ = masa jenis dari material tiang,


 f_{z1} , f_{z2} = parameter nondimensional


Gambar 5. Variasi dari f_{z1} dan E_p/G untuk tahanan ujung (Novak dan El-sharnouby, 1983)

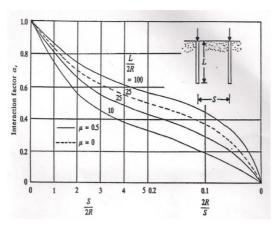
Gambar 6. Variasi dari f_{z2} dan E_p/G untuk tahanan ujung (Novak dan El-Sharnouby, 1983)

Gambar 7. Variasi dari f_{z_1} dan E_p/G untuk tahanan kulit (novak dan El-sharnouby, 1983)

Gambar 8. Variasi dari f_{z2} dan E_p/G untuk tahanan kulit (Novak dan El-sharnouby, 1983)

Secara umum pondasi tiang didirikan sebagai pondasi tiang kelompok. Kekakuan dan redaman dari tiang kelompok tidak sederhana seperti pada tiang tunggal. Novak (1977) berpendapat bahwa ketika jarak antar tiang berdekatan, besar lendutan dari satu tiang meningkat karena lendutan tiang lain disekitarnya dan sebaliknya kekakuan dan redaman dari tiang kelompok berkurang.

Kekakuan dari tiang kelompok dapat diperoleh dengan:


$$k_{z(g)} = \frac{\sum_{1}^{n} k_{z}}{\sum_{r=1}^{n} \alpha_{r}}$$
 (10)

$$k_{z(g)} = \frac{\sum_{r=1}^{n} k_{z}}{\sum_{r=1}^{n} \alpha_{r}}$$

$$c_{z(g)} = \frac{\sum_{r=1}^{n} c_{z}}{\sum_{r=1}^{n} \alpha_{r}}$$
(10)

dimana

 $k_{z(g)} =$ konstanta pegas untuk tiang kelompok, $C_{z(g)}$ = konstanta redaman untuk kelompok, n = banyaknyakelompok, α_r = faktor interaksi. Perkiraan nilai α_r dapat diperoleh dari penyelesaian statis oleh Poulos (1968)

Gambar 9. Variasi dari faktor interaksi α_r (Poulos, 1968)

Untuk tiang kelompok dengan *pilecap*, hubungan antara kekakuan dan redaman dari pondasi adalah:

$$k_{z(cap)} = Gr_o \left[\overline{C}_1 + \frac{G_s}{G} \frac{D_f}{r_o} \overline{S}_1 \right]$$
 (12)

$$c_{z(cap)} = r_o^2 \sqrt{\rho G} \left[\bar{C}_2 + \bar{S}_2 \frac{D_f}{r_o} \sqrt{\frac{G_s \rho_s}{G \rho}} \right]$$
(13)

Tanah yang mendukung pilecap mungkin saja berkualitas buruk dan akan bertambah buruk dengan seiring waktu, hal tersebut harus dihindari pengaruhnya terhadap pilecap, sehingga nilai $\overline{C}_1=0$ dan $\overline{C}_2=0$

$$k_{z(cap)} = G_s D_f \overline{S}_1$$

$$c_{z(cap)} = D_f r_o \overline{S}_2 \sqrt{G_s \rho_s}$$

Dengan demikian, untuk tiang kelompok dan pilecap.

$$k_{z(T)} = \frac{\sum_{1}^{n} k_{z}}{\sum_{r=1}^{n} \alpha_{r}} + G_{s} D_{f} \overline{S}_{1}$$
 (14)

$$c_{z(T)} = \frac{\sum_{1}^{n} c_z}{\sum_{1}^{n} \alpha_r} + D_f r_o \overline{S}_2 \sqrt{G_s \rho_s} \qquad .(15)$$

Dimana $k_{z(T)} \operatorname{dan} c_{z(T)}$ konstanta kekakuan dan redaman untuk tiang kelompok dan pilecap.

Tabel 5. Nilai C₁, C₂, S₁, dan S₂ untuk getaran vertikal

Angka poisons, μ	C_1	C_2	S_1	S_2
0.0	3.9	3.5	2.7	6.7
0.25	5.2	5.0	2.7	6.7
0.5	7.5	6.8	2.7	6.7

a. Rasio redaman

$$D_z = \frac{c_{z(T)}}{2\sqrt{k_{z(T)}m}}$$
 (16)

Dimana m adalah massa dari pilecap dan mesin

b. Frekuensi natural tidak teredam

$$\omega_n = \sqrt{\frac{k_{z(T)}}{m}} \tag{17}$$

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k_{z(T)}}{m}} \tag{18}$$

c. Frekuensi natural teredam/frekuensi resonansi

$$f_m = f_n \sqrt{1 - 2D_z^2} \tag{19}$$

d. Amplitudo dari getaran saat resonansi

$$A_z = \frac{Q_o}{k_{z(T)}} \frac{1}{2D_z \sqrt{1 - D_z^2}}$$
 (20)

e. Amplitodo getaran saat tidak terjadi resonansi

$$A_{z} = \frac{\frac{Q_{o}}{k_{z(T)}}}{\sqrt{\left(1 - \frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2} + 4D_{z}^{2} \frac{\omega^{2}}{\omega_{n}^{2}}}}$$
(21)

Analisis Tiang dengan Getaran Horisontal

Dari Novak(1974) dan Novak dan Elsharnoby (1983) mengatakan bahwa konstanta kekakuan dan redaman untuk tiang

tunggal sama halnya seperti yang dijelaskan untuk getaran vertikal.

$$kx = \frac{E_P I_P}{R^3} f_{x1}$$
 (22)

$$cx = \frac{E_P I_P}{R^2 \nu_s} f_{x2}$$
 (23)

Dimana $E_p =$ modulus elastisistas dari material tiang, $I_p =$ momen inersia dari penampang tiang, $\mathcal{V}_s =$ kecepatan gelombang geser dari tanah, R = jari-jari tiang, Nilai f_{x1} dan f_{x2} berdasarkan tabel 2.9.

Tabel 6. Parameter kekakuan dan redaman untuk getaran horizontal (L/R > 25)

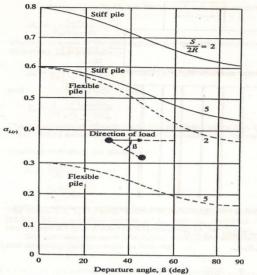
untuk getaran nortzontar (E/K > 23)				
Poisson				
ratio μ	Ep/G	fx_1	fx_2	
0,25	10,000	0.0042	0.0107	
	2,500	0.0119	0.0297	
	1,000	0.0236	0.0579	
	500	0.0395	0.0953	
	250	0.0659	0.1556	
0,4	10,000	0.0047	0.0119	
	2,500	0.0132	0.0329	
	1,000	0.0261	0.0641	
	500	0.0436	0.1054	
	250	0.0726	0.1717	

Sumber: *Principle of soil dynamics*, Braja M Das

Getaran horisontal untuk tiang kelompok

$$\mathbf{k}_{x(g)} = \frac{\sum_{1}^{n} \mathbf{k}_{x}}{\sum_{r=1}^{n} \alpha_{L(r)}}$$
(24)

$$c_{x(g)} = \frac{\sum_{1}^{n} c_{x}}{\sum_{1}^{n} \alpha_{L(r)}}$$
 (25)


Dimana:

 $\alpha_{L(r)}$ = faktor interaksi (poulos, 1971),

 $k_{x(g)}$ = konstanta pegas untuk tiang kelompok,

 $C_{x(g)}$ = koefisian redaman untuk tiang kelompok,

n = banyaknya tiang dalam kelompok.

Gambar 10. Variasi dari faktor interaksi α_r (Poulos, 1968)

Getaran horizontal untuk tiang kelompok dan pilecap

$$k_{x(T)} = \frac{\sum_{1}^{n} k_{x}}{\sum_{r=1}^{n} \alpha_{L(r)}} + G_{s} + D_{f} + \overline{S}_{x1}$$
 (26)

$$c_{x(T)} = \frac{\sum_{1}^{n} c_{x}}{\sum_{r=1}^{n} \alpha_{L(r)}} + D_{f} r_{o} + \overline{S}_{x2} \sqrt{G_{s} \rho_{s}} \quad (27)$$

Tabel 7. Nilai C_{x1} , C_{x2} , S_{x1} dan S_{x2} untuk getaran horizontal

Angka poisson	Parameter	
0	Cx1 = 4.30	Cx2 = 5.7
0.5	Cx1 = 5.10	Cx2 = 3.15
0	Sx1 = 3.6	Sx2 = 8.2
0.25	Sx1 = 4.0	Sx2 = 9.1
0.4	Sx1 = 4.1	Sx2 = 10.6

a. Rasio redaman

$$D_z = \frac{c_{z(T)}}{2\sqrt{k_{x(T)}m}} \tag{28}$$

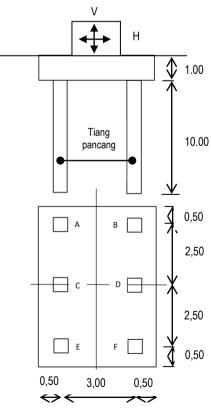
Dimana m adalah massa dari pilecap dan mesin

b. Frekuensi natural teredam/frekuensi resonansi

$$f_{m} = \frac{1}{2\pi} \left[\sqrt{\frac{k_{x(T)}}{m}} \right] \left[\sqrt{1 - 2D_{x}^{2}} \right]$$
 (29)

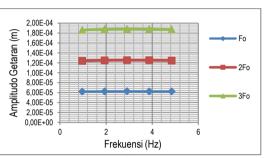
c. Frekuensi natural tidak teredam

$$f_n = \frac{1}{2\pi} \frac{\sqrt{k_{x(T)}/m}}{\sqrt{1 - 2D_x^2}}$$
 (30)

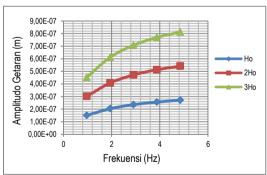

d. Amplitudo getaran saat resonansi

$$A_{x(resonans)} = \frac{Q_o}{k_{x(T)}} \frac{1}{2D_x \sqrt{1 - D_x^2}}$$
 (31)

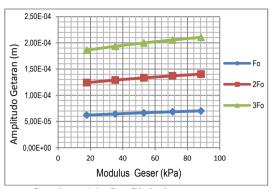
e. Amplitudo getaran selain saat terjadi resonansi


$$A_{x} = \frac{\frac{Q_{o}/k_{x(T)}}{\sqrt{\left[1 - \left(\omega^{2}/\omega_{n}^{2}\right)\right]^{2} 4D_{x}^{2}\left(\omega^{2}/\omega_{n}^{2}\right)}}} (32)$$

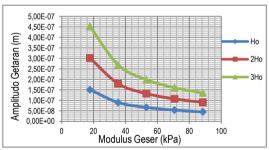
HASIL DAN PEMBAHASAN


Gambar 11. Pondasi mesin dengan Enam (6) tiang pancang

Pondasi tiang pancang kelompok yang terdiri dari 6 tiang pancang seperti pada gambar 11 memikul beban mesin pada tanah dengan panjang tiang pancang 10m, Luas penampang tiang pancang Elastisitas tiang pancang 27800MPa, Berat jenis beton 23,6kN/m3, a₀=0,1, modulus geser tanah 17,7kPa, angka poisson 0,33, berat jenis tanah 16,5kN/m3 dan delta 0,4. Analisis dilakukan dengan mengabaikan pengaruh pilecap. Beban vertikal dan horizontal dinamik 296kN


Gambar 12. Grafik hubungan antara frekuensi dengan amplitude getaran pada beban Vertikal

Pada gambar 12 hubungan antara frekuensi dengan amplitude getaran terlihat bahwa tidak ada pengaruh dari penambahan frekuensi pada amplitude getaran akibat getaran vertikal. Pada penambahan beban getaran vertikal akan menyebabkan bertambah besarnya amplitude getaran.


Gambar 13. Grafik hubungan antara frekuensi dengan amplitude getaran pada beban Horizontal

Pada gambar 13 hubungan antara frekuensi dengan amplitudo getaran terlihat bahwa terdapat pengaruh dari penambahan frekuensi pada amplitudo getaran akibat getaran horizontal. Pada penambahan beban getaran horizontal akan menyebabkan bertambah besarnya amplitudo getaran.

Gambar 14. Grafik hubungan antara modulus geser dengan amplitudo getaran pada beban Vertikal

Pada gambar 14 hubungan antara modulus geser tanah dengan amplitudo getaran terlihat bahwa terdapat pengaruh dari penambahan modulus geser pada amplitudo getaran akibat getaran vertikal, walaupun pengaruhnya sangat kecil. Pada penambahan beban getaran vertical akan menyebabkan bertambah besarnya amplitudo getaran.

Gambar 15. Grafik hubungan antara modulus geser dengan amplitudo getaran pada beban Horizontal

Pada gambar 15 hubungan antara modulus geser tanah dengan amplitudo getaran terlihat bahwa terdapat pengaruh dari penambahan modulus geser pada amplitudo getaran akibat getaran horizontal, makin besar modulus geser tanah makin kecil amplitude getaran yang terjadi. Pada penambahan beban getaran horizontal akan menyebabkan bertambah besarnya amplitudo getaran.

PENUTUP

Kesimpulan

 Pada getaran vertikal penambahan frekuensi tidak mempengaruhi besarnya amplitudo getaran.

- 2. Pada getaran horizontal penambahan frekuensi, makin besar frekuensi makin besar amplitudo getaran.
- 3. Pada hubungan antara modulus geser tanah dengan amplitudo getaran terlihat bahwa terdapat pengaruh dari penambahan modulus geser pada amplitudo getaran akibat getaran vertikal, walaupun pengaruhnya sangat kecil.
- 4. Pada hubungan antara modulus geser tanah dengan amplitudo getaran terlihat bahwa terdapat pengaruh dari penambahan modulus geser pada amplitudo getaran akibat getaran horizontal, makin besar modulus geser tanah makin kecil amplitude getaran yang terjadi.
- 5. Penambahan beban vertikal dan beban horizontal akan menyebabkan bertambah besarnya amplitudo getaran.

Saran

Untuk penelitian yang akan datang sebaiknya menggunakan data aktual dari penyelidikan dinamika tanah.

DAFTAR PUSTAKA

Barkan, D. D., 1962. *Dynamic of Bases and Foundations*, McGraw-Hill Book Company, USA.

Bowles E Josep., 1991. *Analisis dan Desain Pondasi*, Jilid 2, Penerbit Erlangga, Jakarta.

Bowles E Josep., 1982. Foundation and Analysis Design", Third Edition Mc Graw-Hill Book Company, Japan.

Bowles E Josep dan J. K. Hainim., 1989. Sifat-Sifat Fisis dan Geoteknis Tanah, Edisi Kedua, Penerbit Erlangga, Jakarta.

Braja M Das., 2006. *Principles of Geotechnical Engineering*, Fifth Edition Nelson A Division Of Thomson Canada Limited, Canada.

Braja M Das., 1993. *Principles of Soil Dynamics*, PWS-KENT Publishing Company, Canada.

Prakash Shamsher., 1981. *Soil Dynamics*, McGraw-Hill Book Company, USA.