

**JURNAL ILMIAH MANAJEMEN BISNIS DAN INOVASI
UNIVERSITAS SAM RATULANGI (JMBI UNSRAT)**

**ENVISIONING THE FUTURE:
THE ROLE OF ARTIFICIAL INTELLIGENCE IN NEXT GENERATION ERP
SYSTEM**

Shinta Winasis, Agung Terminanto

Universitas Gadjah Mada, Universitas Pancasila

ARTICLE INFO

Keyword: *Artificial Intelligence, ERP, Innovative Solutions*

Kata Kunci: Kecerdasan Buatan, ERP, Solusi Inovatif

Corresponding author:

Shinta Winasis

shintawinasis@gmail.com

Abstract. The business landscape has undergone significant transformation in recent years, driven by rapid advancements in technology and access to vast amounts of data. Today, effective leadership relies more than ever on data-driven decision-making, enabling leaders to make informed choices that align with market trends and consumer behavior. As organizations adapt to this new paradigm has become a crucial skill for leaders seeking to navigate the complexities of modern business. Without an integrated system, business processes can become fragmented, leading to inefficiencies, errors, and misguided decision-making. To address these challenges, Enterprise Resource Planning (ERP) systems have emerged as an essential solution. ERP integrates various business functions, such as financial management, production, procurement, and human resources, into a unified platform. Consequently, companies can monitor and manage their activities more efficiently, enhance data visibility, and expedite informed decision-making based on accurate information. The implementation of ERP not only aids in the standardization of processes but also enables organizations to better plan their business strategies.

Abstrak. Lanskap bisnis telah mengalami transformasi signifikan dalam beberapa tahun terakhir, didorong oleh kemajuan pesat dalam teknologi dan akses ke sejumlah besar data. Saat ini, kepemimpinan yang efektif lebih bergantung pada pengambilan keputusan berdasarkan data, yang memungkinkan para pemimpin untuk membuat pilihan yang tepat yang sejalan dengan tren pasar dan perilaku konsumen. Ketika organisasi beradaptasi dengan paradigma baru ini telah menjadi keterampilan penting bagi para pemimpin yang berusaha menavigasi kompleksitas bisnis modern. Tanpa sistem yang terintegrasi, proses bisnis dapat menjadi terfragmentasi, yang mengarah pada inefisiensi, kesalahan, dan pengambilan keputusan yang salah arah. Untuk mengatasi tantangan ini, sistem Enterprise Resource Planning (ERP) telah muncul sebagai solusi penting. ERP mengintegrasikan berbagai fungsi bisnis, seperti manajemen keuangan, produksi, pengadaan, dan sumber daya manusia, ke dalam platform terpadu. Akibatnya, perusahaan dapat memantau dan mengelola aktivitas mereka dengan lebih efisien, meningkatkan visibilitas data, dan mempercepat pengambilan keputusan yang tepat berdasarkan informasi yang akurat. Implementasi ERP tidak hanya membantu dalam standarisasi proses tetapi juga memungkinkan organisasi untuk merencanakan strategi bisnis mereka dengan lebih baik.

INTRODUCTION

Enterprise Resource Planning (ERP) systems have become the backbone of modern business operations (Schütte, 2024). As business complexity and data volume increase, the challenges associated with effectively managing resources are becoming more pronounced. Artificial Intelligence (AI) offers innovative solutions to address these challenges. The integration of AI within ERP systems not only automates routine tasks but also provides deeper data analysis and facilitates improved decision-making (Nyathani et al., 2024). This paper aims to explore the application of AI in ERP, the benefits derived from such integration, and the potential challenges that organizations may encounter during this process.

LITERATURE REVIEW

Enterprise Resources Planning

Enterprise Resource Planning refers to systems that integrate various business functions into a single unified platform, enabling organizations to manage and monitor their business activities more efficiently (Kotha, 2024). These functions include financial management, procurement, production, accounting, and human resources. ERP systems are designed to streamline and manage multiple business functions within a cohesive framework.

History of Enterprise Resource Planning

The history of Enterprise Resource Planning (ERP) dates back to the 1960s with the introduction of inventory and production management systems (Lipych, 2021). During this period, companies began utilizing computers to automate production processes. In the 1970s, Material Requirements Planning (MRP) was introduced as a system for managing inventory and production planning (Al-Amin, 2023). MRP enabled organizations to ensure that the right materials were available to meet production needs.

In the 1980s, MRP II emerged as an evolution of MRP. MRP II expanded its focus beyond materials to include capacity planning, production control, and human resource management (Selamoğlu, 2023). During this era, businesses began to recognize the importance of integrating various business functions—such as finance, marketing, and distribution—within a single system. By the 1990s, the term Enterprise Resource Planning (ERP) began to gain traction. ERP encapsulated all aspects of business management within an integrated platform (Boutros et al., 2024). It offered modular components that could be integrated, such as finance, human resources, and supply chain management, allowing companies to select and customize features according to their specific needs. Major companies like SAP, Oracle, and PeopleSoft began to dominate the market with comprehensive ERP solutions.

The advent of cloud technology in the early 2000s transformed the way organizations implemented ERP systems. Cloud data storage reduced information technology infrastructure costs and allowed for more flexible access (Tang et al., 2021). Subsequently, the Software as a Service (SaaS) business model was introduced, enabling companies to utilize ERP without requiring significant investments in hardware and software. With the evolution of the digital market and e-commerce, ERP systems began to integrate e-commerce functionalities, allowing organizations to manage both online and offline sales within a single system (Santos et al., 2021). Furthermore, advancements in data analytics during the 2010s led to the adoption of big data within modern ERP systems, facilitating enhanced insights and supporting more informed decision-making (Gopal et al., 2024).

FINANCE	SALES	WEBSITES	SUPPLY CHAIN
Accounting	CRM	Website Builder	Inventory
Invoicing	Sales	eCommerce	Manufacturing
Expenses	POS Shop	Blog	PLM
Spreadsheet (BI)	POS Restaurant	Forum	Purchase
Documents	Subscriptions	Live Chat	Maintenance
Sign	Rental	eLearning	Quality
HUMAN RESOURCES	MARKETING	SERVICES	PRODUCTIVITY
Employees	Social Marketing	Project	Discuss
Recruitment	Email Marketing	Timesheets	Approvals
Time Off	SMS Marketing	Field Service	IoT
Appraisals	Events	Helpdesk	VoIP
Referrals	Marketing Automation	Planning	Knowledge
Fleet	Surveys	Appointments	WhatsApp

Picture 1 ERP Modules

(From : www.odoo.com)

Currently, many ERP systems are beginning to integrate artificial intelligence for process automation, predictive analytics, and user experience personalization. AI assists in automating routine tasks such as order processing and inventory management (Yathiraju, 2022). The development of more user-friendly and intuitive interfaces often employs AI technologies to provide enhanced recommendations and support. Modern ERP systems are also starting to integrate data from Internet of Things (IoT) devices to improve visibility and efficiency within the supply chain (Jawad et al., 2024).

Functions and Benefit of ERP

ERP systems enable organizations to manage all aspects of financial operations, including accounting, budget management, and financial reporting. With an integrated system, financial data can be accessed in real-time, allowing for more accurate analysis and improved decision-making (Halimuzzaman et al., 2024). Additionally, the implementation of ERP systems facilitates the management of the flow of goods from suppliers to customers. This encompasses inventory management, procurement, and distribution (Nugraha et al., 2023). With centralized information, companies can optimize their supply chains, reduce costs, and enhance customer satisfaction (Ulfianinda, 2023).

Picture 2 Benefit of ERP

(From : www.netsuite.com)

From the perspective of human resource management, ERP systems enable organizations to manage employee data, recruitment, payroll, and employee development within a single platform (Alhalboosi et al., 2021). This facilitates HR departments in planning workforce needs and monitoring employee performance effectively. For companies operating in the manufacturing sector, ERP provides tools for planning and managing production processes. This includes production control, capacity planning, and quality management, thereby helping to enhance efficiency and reduce waste (Mardiani et al., 2024). ERP systems can also be utilized for planning,

executing, and monitoring projects. This feature aids in managing project timelines, resources, and costs, ensuring that project objectives are met according to plan (Kirmizi et al., 2022).

By integrating all these functions into a single system, ERP enables organizations to gain better visibility over their entire operations (Chirvase et al., 2023). This supports faster, data-driven decision-making and enhances collaboration across departments. As a result, organizations can become more responsive to market changes and customer demands (Hustad et al., 2023).

Artificial Intelligence (AI)

Artificial Intelligence (AI) is a branch of computer science focused on the development of systems and technologies capable of performing tasks that typically require human intelligence (Garg, 2021). AI encompasses a variety of techniques and methods, including Machine Learning (ML), which is a subset of AI that enables systems to learn from data and improve their performance over time without explicit programming. ML employs algorithms to analyze patterns within data and make predictions based on those patterns (Pugliese et al., 2021).

Another relevant technology is Natural Language Processing (NLP), which allows machines to understand, process, and generate human language (Rahaman et al., 2023). NLP is utilized in various applications, such as virtual assistants, sentiment analysis, and recommendation systems, to enhance interactions between humans and computers. AI also possesses Predictive Analytics Capabilities, which use historical data and statistical algorithms to forecast future outcomes. In a business context, predictive analytics can assist organizations in demand planning, inventory management, and making strategic decisions based on identified trends (Faheem et al., 2024).

AI serves to enhance operational efficiency and effectiveness through automation and deeper analysis, enabling companies to quickly adapt to changes in the business environment (Firdaus et al., 2025). The integration of AI within ERP not only transforms how organizations operate but also opens new avenues for innovation and growth.

Artificial Intelligence in the Context of ERP

Enterprise Resource Planning (ERP) has undergone a significant transformation from basic inventory management systems to complex integrated solutions that utilize AI and data analytics. Artificial Intelligence (AI) has increasingly become an integral part of ERP systems, providing a range of innovative solutions that enhance operational efficiency and effectiveness. The integration of AI within ERP offers several significant applications and benefits (Sarferaz, 2024). AI can automate numerous routine tasks within ERP systems, such as data processing, inventory management, and report generation. By employing intelligent algorithms, these systems can execute these tasks more quickly and accurately, allowing employees to focus on more strategic, value-added activities (Goundar et al., 2021). One example of this application is SAP Leonardo, a

digital innovation platform that integrates various technologies, including AI, into SAP's ERP system. With business process automation features utilizing Robotic Process Automation (RPA), SAP Leonardo automates routine tasks such as invoice processing and procurement requests, resulting in time and operational cost efficiencies, as well as improved data accuracy. In terms of Data Analytics and Prediction, AI possesses predictive analytics capabilities that enable the analysis of historical data and trends to provide objective insights (Bauskar, 2024). For instance, in supply chain management, AI can forecast product demand based on previous purchasing patterns, assisting companies in managing inventory more efficiently (Helo et al., 2022). Oracle Cloud ERP is an application that leverages historical data and machine learning algorithms to offer more accurate inventory management recommendations, thereby enhancing inventory management efficiency and reducing the risk of overstocking or stockouts. AI can also enhance user experience within ERP systems. Through Natural Language Processing (NLP), users can interact with the system using natural language, making it more intuitive and accessible (Kacar, 2023). Additionally, AI can provide personalized recommendations based on user data, improving decision-making efficiency. Microsoft Dynamics 365 exemplifies an application that employs AI to enhance user experience with features like chatbots and virtual assistants. By utilizing NLP, users can engage with the system in natural language to retrieve information or complete tasks (Mah et al., 2022). This application facilitates information access and boosts user productivity.

In an era where data security is a primary concern, AI can assist in detecting and preventing threats to sensitive data. By applying machine learning algorithms, ERP systems can identify suspicious activities and respond proactively (Moore, 2023). One widely used application is Infor CloudSuite, which employs AI to enhance data security by analyzing access patterns and user behavior. This system can detect suspicious activities and alert administrators to take necessary actions (Moore et al., 2024). The use of AI in this manner reduces the risk of data breaches and enhances the security of sensitive information.

In one of the most critical strategic processes, data-driven decision-making, AI enables ERP systems to provide better recommendations for strategic decision-making (Vaid et al., 2022). By presenting in-depth data analyses and relevant factors, managers can make more accurate and informed decisions in financial planning, product development, and marketing strategies (Goundar et al., 2021). An example of a tool used for this purpose is NetSuite, a cloud-based ERP solution that integrates AI to provide in-depth analysis and recommendations for decision-making. This feature assists managers in planning business strategies based on real-time data and market trends, facilitating faster and more informed decision-making, ultimately enhancing the company's competitiveness.

In the context of ERP, the application of Artificial Intelligence not only improves operational efficiency but also helps organizations remain competitive in an ever-changing market (Jhurani, 2022). With AI's ability to learn and adapt, this integration will continue to evolve, opening new

opportunities for innovation in enterprise resource management. As technological advancements continue, ERP systems are expected to become increasingly sophisticated, enabling companies to adapt swiftly and efficiently to market changes (Mandava, 2024). AI encompasses various technologies such as Machine Learning (ML), Natural Language Processing (NLP), and predictive analytics. By integrating these technologies into ERP systems, organizations can enhance operational efficiency, reduce costs, and expedite decision-making.

Challenges and Obstacles in ERP Implementation

Despite the fact that ERP implementation is a critical issue for enhancing organizational competitiveness, various challenges and obstacles exist in the deployment of both conventional and AI-based ERP systems. The first challenge is cost. Implementing an ERP system requires substantial investment, including expenses for software, hardware, employee training, and ongoing maintenance and updates (Weerasekara, 2023).

Another significant challenge is organizational culture change, which can lead to resistance to change. This resistance may hinder the acceptance of the new system and result in misunderstanding and rejection from staff. The ERP implementation process is often time-consuming, which can disrupt day-to-day business operations. Furthermore, integrating ERP with existing systems can present both technical and operational challenges (Winasis et al., 2024). In the context of AI-based ERP implementation, an additional challenge is the complexity that arises from integrating AI technologies into the ERP system, which requires higher technical expertise (Pokala, 2024). As AI technology is relatively new, it necessitates specialized training to function effectively in specific contexts, which can demand additional time and resources. Moreover, providing effective solutions via AI requires large volumes of high-quality data to operate optimally (Yathiraju, 2022). If the available data is inadequate, the outcomes produced may be inaccurate. Processing large datasets can also raise privacy and data security issues that need to be addressed with appropriate policies.

Implementing AI within ERP systems often requires additional investment in IT infrastructure and more robust hardware. Consequently, this results in higher costs along with the necessity for specialized expertise (Haider, 2021). Although AI technology is cutting-edge, many stakeholders may not fully understand its capabilities and limitations, leading to unrealistic expectations. The use of AI in decision-making can also raise ethical questions, particularly concerning algorithmic bias and transparency (Martins, 2025). Overall, the implementation of ERP systems, whether traditional or AI-based, faces numerous challenges and obstacles. Understanding and addressing these issues with sound strategies and careful planning can help organizations maximize the benefits of the chosen ERP system.

RESEARCH METHOD

This research adopts a qualitative approach, employing a literature review of scholarly articles published within the last five years. A systematic search was conducted using relevant databases and keywords related to the role of AI in ERP. Articles were selected based on their relevance, research quality, and reliability. The data obtained from the selected articles were then comprehensively analyzed to derive findings and recommendations pertinent to the research topic.

CONCLUSION & RECOMMENDATION

The integration of Artificial Intelligence (AI) into Enterprise Resource Planning (ERP) systems offers significant potential for enhancing operational efficiency and decision-making. AI integration within ERP can automate routine tasks and analyze large volumes of data quickly and accurately. By employing predictive analytics techniques, organizations can identify trends and patterns that may not be apparent through manual analysis. This capability facilitates faster and more informed decision-making. With more accurate information and deeper analysis, managers and business leaders can make better decisions. AI can provide recommendations based on historical data and current trends, assisting companies in planning more effective business strategies. However, challenges such as cost remain a concern. Implementing an AI-enhanced ERP system often requires substantial initial investment. These costs include software acquisition, employee training, and system maintenance. Organizations must consider whether the long-term benefits justify these expenses. Although AI promises numerous advantages, the technology is still in a developmental stage. Challenges such as model accuracy, data security, and integration with existing systems must be addressed before companies can fully rely on AI within their ERP frameworks. The introduction of new systems often encounters resistance from employees accustomed to traditional workflows. Effective training and communication are essential to ensure that employees understand the benefits of this new technology. Despite the challenges that need to be overcome, the benefits derived from automation, improved data analysis, and enhanced decision-making can provide a significant competitive edge. For companies striving to remain relevant and competitive in an ever-changing market, investing in AI technology within ERP is not merely an option but a necessity.

For future research, longitudinal research can be done to track the evolution of AI-enhanced ERP systems over time and their sustained impact on business performance. The research could provide deeper insights into the complexities and capabilities of AI within ERP frameworks, ultimately guiding organizations toward more effective implementation and utilization of these technologies.

REFERENCES

Al-Amin, M., Hossain, T., Islam, J., & Biwas, S. K. (2023). History, features, challenges, and critical success factors of enterprise resource planning (ERP) in the era of industry 4.0. *European Scientific Journal, ESJ*, 19(6), 31.

Bauskar, S. (2024). Business Analytics in Enterprise System Based on Application of Artificial Intelligence. *International Research Journal of Modernization in Engineering Technology and Science*.

Boutros, M. B., El Hajj, C., Jawad, D., & Martínez Montes, G. (2024). Diffusion of ERP in the Construction Industry: An ERP Modules Approach: Case Study of Developing Countries. *Buildings*, 14(10), 3224.

Chirvase, C. S., & Zamfir, A. (2023, July). Exploring enterprise resource planning (ERP) development: Challenges, opportunities and how can help companies navigate turbulent contemporary times. In *Proceedings of The International Conference on Business Excellence* (Vol. 17, No. 1, pp. 1919-1928).

Faheem, M., Aslam, M. U. H. A. M. M. A. D., & Kakolu, S. R. I. D. E. V. I. (2024). Enhancing financial forecasting accuracy through AI-driven predictive analytics models. *Retrieved December, 11.*

Firdaus, A., & Winasis, S. (2025). EMPOWERING STARTUP COMPANIES WITH ARTIFICIAL INTELLIGENCE TECHNOLOGY. *JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi)*, 12(1), 53-62.

Garg, P. K. (2021). Overview of artificial intelligence. In *Artificial intelligence* (pp. 3-18). Chapman and Hall/CRC.

Goundar, S., Nayyar, A., Maharaj, M., Ratnam, K., & Prasad, S. (2021). How artificial intelligence is transforming the ERP systems. *Enterprise systems and technological convergence: Research and practice*, 85.

Haider, L. (2021). Artificial intelligence in ERP, Bachelor Theses Metropolia University of Applied Sciences

Halimuzzaman, M., Sharma, J., & Khang, A. (2024). Enterprise Resource Planning and Accounting Information Systems: Modeling the Relationship in Manufacturing. In *Machine Vision and Industrial Robotics in Manufacturing* (pp. 418-434). CRC Press

Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. *Production Planning & Control*, 33(16), 1573-1590.

Hustad, E., & Stensholt, J. (2023). Customizing ERP-systems: A framework to support the decision-making process. *Procedia Computer Science*, 219, 789-796.

Jawad, Z. N., & Balázs, V. (2024). Machine learning-driven optimization of enterprise resource planning (ERP) systems: a comprehensive review. *Beni-Suef University Journal of Basic and Applied Sciences*, 13(1), 4.

Jhurani, J. (2022). Revolutionizing enterprise resource planning: The impact of artificial intelligence on efficiency and decision-making for corporate strategies. *International Journal of Computer Engineering and Technology (IJCET)*, 13(2), 156-165

Kacar, M. (2023). Application of AI in customer experience management. In *Marketing and Sales Automation: Basics, Implementation, and Applications*(pp. 409-430). Cham: Springer International Publishing.

Kotha, K. R. (2024). Integration Strategies For E-Commerce Platforms With Erp Systems: A Comparative Analysis. *International Journal Of Computer Engineering And Technology (IJCET)*, 15(5), 287-295.

Lipych, L., Khilukha, O., & Kushnir, M. (2021, November). Evolution of the development of enterprise management information systems. In *Economic Forum*(Vol. 4, No. 11, pp. 5-94).

Mah, P. M., Skalna, I., & Muzam, J. (2022). Natural language processing and artificial intelligence for enterprise management in the era of industry 4.0. *Applied Sciences*, 12(18), 9207.

Mandava, H. (2024) Streamlining enterprise resource planning through digital technologies. *Journal of Advanced Engineering Technology. ResearchGate*.

Mardiani, E., Riswandi, D. I., Suprayitno, D., & Mudia, H. (2024). Implementation of internet of things in the production process of msmes: quality improvement and process control. *Jurnal Informasi dan Teknologi*, 310-316.

Martins, O. (2025). Ethical Considerations in AI-Enhanced ERP Systems: Balancing Innovation with Data Privacy and Security, reasearchgate.net

Moore, C. (2023). AI-powered big data and ERP systems for autonomous detection of cybersecurity vulnerabilities. *Nanotechnology Perceptions*, 19, 46-64

Moore, C., Chinta, P. C. R., & Routhu, K. (2024). Harnessing Big Data and AI-Driven ERP Systems to Enhance Cybersecurity Resilience in Real-Time Threat Environments. *Available at SSRN 5130235*

Nyathani, R., Allam, K., Engineer, B. I., Joseph, S., Daniel, S., & Godwin, G. O. (2024). Synergizing AI, Cloud Computing, and Big Data for Enhanced Enterprise Resource Planning (ERP) Systems. *Int. J. Comput. Tech*, 11, 1-6.

Pugliese, R., Regondi, S., & Marini, R. (2021). Machine learning-based approach: Global trends, research directions, and regulatory standpoints. *Data Science and Management*, 4, 19-29.

Pokala, P. (2024). The integration and impact of artificial intelligence in modern enterprise resource planning systems: A comprehensive review. Available at SSRN 5069295

Rahaman, M. S., Ahsan, M. T., Anjum, N., Terano, H. J. R., & Rahman, M. M. (2023). From ChatGPT-3 to GPT-4: a significant advancement in ai-driven NLP tools. *Journal of Engineering and Emerging Technologies*, 2(1), 1-11.

Santos, F., & Martinho, R. (2021). Architectural Challenges on the Integration of e-Commerce and ERP Systems: A Case Study. In *ICEIS (1)* (pp. 313-319).

Sarferaz, S. (2024). *Embedding Artificial Intelligence into ERP Software*. Springer Nature

Selamoğlu, B. İ. (2023). MRP and ERP. In *Smart and Sustainable Operations and Supply Chain Management in Industry 4.0* (pp. 203-221).

Schütte, R. (2024). The next generation of ERP systems: problems of traditional ERP-Systems and the next wave of really standardized ERP-Systems. *Informing possible future worlds—essays in honour of Ulrich Frank*. Logos, Berlin, 427-452.

Tang, L., & Xu, W. (2021). Practice of ERP cloud development and evolution. In *2021 IEEE 12th international conference on software engineering and service science (ICSESS)* (pp. 190-197). IEEE.

Ulfianinda, T (2023), 12 Manfaat ERP Bagi Perusahaan, <https://www.mas-software.com/blog/manfaat-erp>

Vaid, A., & Sharma, C. (2022). Leveraging SAP and artificial intelligence for optimized enterprise resource planning: Enhancing efficiency, automation, and decision-making. DOI <https://doi.org/10.30574/wjarr, 3>

Weerasekara, U., & Gooneratne, T. (2023). Enterprise resource planning (ERP) system implementation in a manufacturing firm: Rationales, benefits, challenges and management accounting ramifications. *Accounting and Management Information Systems*, 22(1), 86-110.

Winasis, S., & Dinariyana, A. A. B. (2024). Sustainable Startups: The Game Changing Role of Enterprise Resource Planning. *JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi)*, 11(3), 1866-1880.

Yathiraju, N. (2022). Investigating the use of an artificial intelligence model in an ERP cloud-based system. *International Journal of Electrical, Electronics and Computers*, 7(2), 1-26.