Simulasi Optimasi Suhu dari Sistem Pemanasan Temperatur Tinggi Berbasis Gelombang Mikro

Authors

  • Fingken Stevanus Sagai Universitas Sam Ratulangi
  • Dolfie Paulus Pandara Universitas Sam Ratulangi
  • Hesky Stevy Kolibu Universitas Sam Ratulangi
  • Seni Herlina Juita Tongkukut Universitas Sam Ratulangi
  • Ferdy Ferdy Universitas Sam Ratulangi
  • Gerald Hendrik Tamuntuan Universitas Sam Ratulangi
  • Gilbert Abidjulu Universitas Sam Ratulangi

DOI:

https://doi.org/10.35799/jm.v11i1.36151

Keywords:

Optimasi, Suhu Tungku, Oven Gelombang Mikro, COMSOL Multiphysics

Abstract

Telah dilakukan penelitian simulasi untuk menganalisis pengaruh variasi dimensi geometri tungku, daya oven gelombang mikro dan waktu pemanasan terhadap suhu tungku, dan mengoptimasi suhu tungku dalam pemanasan dengan gelombang mikro dari variasi parameter yang digunakan. Tungku kubus dengan panjang sisinya dan tungku silinder dengan diameter dan tingginya masing-masing memiliki ukuran yang sama yaitu 50 mm untuk tipe I, 70 mm untuk tipe II dan 90 mm untuk tipe III, yang terbuat dari material SiC dipanaskan dalam oven gelombang mikro pada daya 100%, 75% dan 50% dari daya maksimum 1,3 kW. Pemanasan tungku ini disimulasikan menggunakan perangkat lunak COMSOL Multiphysics. Hasil simulasi dari setiap parameter dilakukan analisis dan optimasi untuk mencapai suhu optimum 500oC dalam waktu yang singkat dengan konsumsi energinya yang rendah. Hasil simulasi yang diperoleh menunjukkan bahwa variasi parameter memengaruhi suhu yang dihasilkan tungku dan distribusi suhu di dalam tungku. Optimasi pada tungku kubus tipe II (ukuran 70 mm) yang dipanaskan dalam oven gelombang mikro dengan daya 1,3 kW (100%) mencapai suhu optimum 500oC dalam waktu relatif singkat sebesar 7 menit 33 detik (453 detik) dan konsumsi energi relatif rendah sebesar 5,889 × 105 J.

Simulation research has been conducted to analyze the effect of variations in the dimensions of the furnace geometry, microwave oven power, and heating time on the furnace temperature, and optimize the furnace temperature in microwave heating from a variety of parameters used. The cube furnace with side length and cylindrical furnace with diameter and height respectively have the same size, namely 50 mm for type I, 70 mm for type II, and 90 mm for type III, which are made of SiC material heated in a microwave oven at power 100%, 75% and 50% of the maximum power of 1,3 kW. The heating of this furnace was simulated using COMSOL Multiphysics software. The simulation results for each parameter are analyzed and optimized to achieve the optimum furnace temperature of 500oC in a short time with low energy consumption. The simulation results obtained show that the parameter variations affect the temperature produced by the furnace and the temperature distribution in the furnace. Optimization of the type II cube furnace (size 70 mm) heated in a microwave oven with a power of 1,3 kW (100%) reaches the optimum temperature of 500oC in a relatively short time of 7 minutes 33 seconds (453 seconds) and relatively low energy consumption of 5,889 × 105 J.

Author Biographies

Fingken Stevanus Sagai, Universitas Sam Ratulangi

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Dolfie Paulus Pandara, Universitas Sam Ratulangi

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Hesky Stevy Kolibu, Universitas Sam Ratulangi

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Seni Herlina Juita Tongkukut, Universitas Sam Ratulangi

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Ferdy Ferdy, Universitas Sam Ratulangi

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Gerald Hendrik Tamuntuan, Universitas Sam Ratulangi

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Gilbert Abidjulu, Universitas Sam Ratulangi

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

References

Bhattacharya, M., dan Basak, T. 2016. A review on the susceptor assisted microwave processing of materials. Energy. 97: 306–338.

Chandrasekaran, S., Basak, T., dan Ramanathan, S. 2012. Microwave Material Processing—A Review. AIChE Journal. 58(2): 330–363.

Datta, A. K., dan Rakesh, V. 2013. Principles of Microwave Combination Heating. Comprehensive Reviews in Food Science and Food Safety. 12(1): 24–39.

Fakhri, M. S., Aziz, S. J., dan Abed, A. H. 2020. Investigation of microwaves furnace effect on the mechanical properties of composite material. Journal of Mechanical Engineering Research and Developments. 43(3): 1–11.

Griffiths, J. D. 2017. Introduction to Electrodynamics Fourth Edition. Cambridge University Press.

Hakim, A. R., Handoyo, W. T., dan Prasetyo, A. W. 2020. A simulation study of parameters influencing microwave heating of seaweed (Eucheuma cottonii). Journal of Physics: Conference Series. 1444(1).

Mishra, R. R., dan Sharma, A. K. 2016. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing. 81: 78–97.

MatWeb Material Property Data. (n.d.). Retrieved December 19, 2020, from http://www.matweb.com/index.aspx.

Muley, P. D., Nandakumar, K., dan Boldor, D. 2019. Numerical modelling of microwave heating of a porous catalyst bed. Journal of Microwave Power and Electromagnetic Energy. 53(1): 24–47.

Oghbaei, M., dan Mirzaee, O. 2010. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds. 494(1–2): 175–189.

Permatasari, R. Annas, M.S, dan B. A. 2015. Distribusi Temperatur Pada Microwave menggunakan Metode CFD. Seminar Nasional Tahunan Teknik Mesin XIV (SNTT M XIV), September. Hlm. 7–8.

Syarif, D. N. 2020. Pemanfaatan Oven Gelombangmikro (Microwave) Rumah Untuk Sistem Pemanasan (Heating System) Temperatur Tinggi.http://repository.unsri.ac.id/id/eprint/24150.

Srikant, S. S., Mukherjee, P. S., dan Bhima Rao, R. 2013. Effect of heat treatment in microwave furnace for placer ilmenite. International Journal of Applied Science and Engineering. 11(3): 245–250.

Tamang, S., dan Aravindan, S. 2019. 3D numerical modelling of microwave heating of SiC susceptor. Applied Thermal Engineering. 162(2019): 114250.

Wang, H., Zhang, Y., Zhang, Y., Feng, S., Lu, G., dan Cao, L. 2019. Laboratory and numerical investigation of microwave heating properties of asphalt mixture. Materials. 12(1).

Zhang, J., Luo, Y., Liao, C., Xiong, F., Li, X., Sun, L., dan Li, X. 2017. Theoretical investigation of temperature distribution uniformity in wood during microwave drying in three-port feeding circular resonant cavity. Drying Technology. 35(4): 409–416.

Downloads

Published

09-12-2021

Issue

Section

Articles