# STUDI PERBANDINGAN ANALISIS FLAT SLAB DAN FLAT PLATE

## Fransisca Nikita Constantine Marthin D. J. Sumajouw, Ronny Pandaleke

Fakultas Teknik, Jurusan Sipil, Universitas Sam Ratulangi Manado Email: fransiscawongkar@gmail.com

#### **ABSTRAK**

Flat slab dan flat plate merupakan elemen struktur yang tidak mempuyai balok, dimana seluruh beban yang ada disalurkan oleh pelat menuju ke kolom. Hal yang penting untuk diperhatikan dalam suatu analisis pelat adalah kekuatan pelat dan ketahanan untuk menahan gaya geser (punching shear) pada daerah sekitar kolom. Perhitungan momen dapat menjadi acuan untuk merencanakan tulangan sehingga perlu adanya analisis dari kedua sistem pelat ini untuk mengetahui kekuatan dari sistem pelat.

Elemen pelat yang akan dianalisis merupakan bangunan dengan 5 lantai dan hanya meninjau elemen pelat pada lantai 3 yang letak bangunannya berada di Jalan Ring Road 2. Analisis dilakukan dengan menggunakan Metode Rangka Ekivalen dan Metode Desain Langsung dengan mengikuti persyaratan dari SNI 2847-2013 dan SNI 1727-2013 untuk pembebanan. Berdasarkan hasil analisa yang telah dilakukan, flat slab dan flat plate dinyatakan mampu untuk menahan momen lentur dan gaya geser yang terjadi. Momen lapangan yang terjadi pada flat plate lebih besar dari flat slab dikarenakan tidak adanya tambahan drop panel atau kepala kolom pada flat plate. Untuk perbandingan analisis dari flat plate dan flat slab terletak pada penambahan drop panel dan kepala kolom pada sistem flat slab yang mempengaruhi perhitungan tebal pelat, kekakuan pelat-balok, kekakuan kolom dan ketahanan geser.

Kata kunci: flat slab, flat plate, punching shear, analisis

#### **PENDAHULUAN**

#### **Latar Belakang**

Perkembangan dalam dunia konstruksi terus meningkat, baik peningkatan dalam proses perbaikan struktur, proses pengerjaan dan kualitas suatu struktur yang mendasari munculnya berbagai ide-ide bagus untuk menyelesaikan sebuah masalah maupun untuk memenuhi kebutuhan dari suatu konstruksi. Perlu adanya perubahan dari ide-ide tersebut dari sekedar ide menjadi sebuah proses yang dapat diterapkan.

Salah satu perkembangan dalam sistem konstruksi adalah *flat plate*, yaitu pelat beton bertulang yang tidak memiliki balok. Umumnya keseluruhan beban pada pelat di salurkan oleh sistem lantai pada arah melintang dan membujur menuju ke kolom sehingga dapat menyebabkan suatu keadaan dimana kolom akan menembus pelat. Untuk mengatasi hal tersebut di sekitar kepala kolom diberikan pertambahan tebal pelat atau biasa disebut drop panel yang berfungsi

sebagai penyangga tambahan pada pelat untuk mengurangi tegangan geser pada daerah kolom. Sistem pelat dengan pertambahan pelat drop panel dan kepala kolom biasa disebut *Flat Slab*, atau pelat cendawan.

Dalam penulisan ini penulis melakukan perbandingan antara *Flat Slab* dan *flat plate* dalam hal analisa perhitungan dan kekuatan struktur khususnya pada momen-momen yang bekerja yang mempengaruhi jumlah tulangan yang akan dipakai nantinya. Metode analisa yang akan digunakan yaitu metode rangka ekuivalen dan metode desain langsung dengan ketentuan-ketentuan yang ada agar kedepannya dapat menjadi salah satu bahan pertimbangan untuk memilih antara *flat slab* dan *flat plate*.

#### Rumusan Masalah

Penulisan laporan penelitian ini membahas tentang Bagaimana menganalisa dan membandingkan momen lentur yang dihasilkan pada *flat slab* dan *flat plate* 

dengan dua metode yang diberikan dalam SNI 2847-2013 beton bertulang.

#### Batasan Masalah

Batasan masalah yang digunakan dalam penelitian ini adalah :

- 1. Bangunan yang ditinjau adalah bangunan ruko yang terdiri dari 5 lantai dengan konstruksi beton bertulang dan sistem pelat konvensional.
- 2. Hanya menganalisa elemen pelat lantai 3.
- 3. Metode perencanaan yang dibahas Metode Rangka Ekuivalen dan Metode Desain Langsung, dengan Peraturan yang digunakan adalah SNI 2847-2013
- Hanya membahas gaya akibat gravitasi (beban hidup dan beban mati) dan tidak membahas gaya gempa.
- Perancangan pembebanan mengacu pada Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain (SNI 03-1727-2013).

#### **Tujuan Penelitian**

- 1. Mengetahui perbandingan analisis perhitungan *flat slab* dan *flat plate* dengan menggunakan Metode Rangka Ekivalen dan Metode Desain Langsung.
- 2. Mengetahui perbandingan momen pada *flat slab* dan *flat plate*
- Mendapatkan kesimpulan yang nantinya dapat mendasari perencanaan tulangan dari kedua sistem struktur pelat beton bertulang tersebut.

#### **Manfaat Penelitian**

- 1. Dapat menerapkan dan mensosialisasikan peraturan peraturan perencanaan yang benar dan yang berlaku saat ini pada pelat serta dapat menambah wawasan tentang analisis sistem *flat slab* dan *flat plate*.
- 2. Sebagai bahan pertimbangan pemilihan desain pelat yang dibuat berdasarkan keamanan dan kekuatan pelat.

### LANDASAN TEORI

#### Flat Plate

Pelat datar (*flat plate*) adalah pelat beton pejal dengan tebal merata yang mentransfer beban secara langsung ke kolom pendukung tanpa bantuan balok atau kepala kolom atau drop panel. Pelat datar dapat dibuat dengan cepat karena bekisting dan susunan tulangan yang sederhana. Pelat ini memerlukan tinggi lantai terkecil untuk memberikan persyaratan tinggi ruangan dan memberikan fleksibilitas terbaik dalam susunan kolom dan partisi. (Mc.Cormac, 2003).

#### Flat Slab

Flat Slab adalah pelat beton bertulang yang ditumpu secara langsung oleh kolom-kolom beton tanpa memakai balok-balok perantara. Pelat dapat dengan suatu pekat tiang (drop panel). Kolom juga dapat mempunyai penampang konstan atau dibesarkan untuk membentuk suatu kepala kolom (column head).

#### Pembebanan

Beban mati adalah berat seluruh bahan konstruksi bangunan gedung yang terpasang. (SNI 1727: 2013) Beban hidup adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu bangunan, dan didalamnya termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat berpindah (*moveable equipment*).

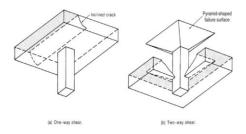
## Kombinasi Beban

Suatu struktur dirancang mampu memikul beban mati, beban hidup dan beban gempa sesuai SNI Gempa 1726:2012 yaitu: 1,4DL

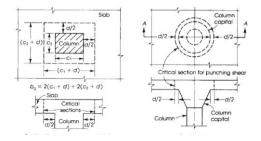
1,2DL + 1,6LL+ 0,5 (Lr atau R)

1.2DL + 1.6 (Lr atau R) + (L atau 0.5W)

1,2DL + 1,0W + L + 0,5 (Lr atau R)


1,2DL + 1,0E + L + 0,2S

0.9DL + 1.0W


0.9DL + 1.0E

#### Ketahanan Geser

Ada dua jenis geser yang harus ditinjau dalam perencanaan dari *flat slab* dan *flat plate*. Ini adalah dua hal yang sama yang telah ditinjau dalam kaki kolom-geser satu arah dan dua arah (yaitu, geser balok dan geser *punching*). Untuk analisis geser balok, pelat dianggap bekerja sebagai balok lebar yang mebentang di antara tumpuannya. Penampang kritis diambil pada jarak d dari permukaan kolom. Untuk geser *punching*, penampang diambil pada jarak d dari permukaan kolom. (Mc.Cormac, 2003).



Gambar 1 (a) Geser satu arah, (b) Geser dua arah Sumber: Wigh & McGregor (2011)



Gambar 2 Keliling kritis pada *flat plate* dan *flat slab* 

Sumber: Hassoun, Al-Manaseer (2015)

Dalam SNI 2847-2013 pasal 11.2.1 untuk komponen struktur yang dikenai geser dan lentur saja diberikan:

$$Vc = 0.17 \sqrt{f'c} b_o d$$
 (1)

Untuk aksi dua arah dalam pasal 11.11.2.1 diberikan:

$$Vc = 0.33 \sqrt{f'c} b_o d$$
 (2)

### **Tebal Pelat**

Berdasarkan SNI 2847-2013 pasal 9.5.3.2 tebal minimum untuk pelat tanpa balok interior yang membentang di antara tumpuan dan mempunyai rasio bentang panjang terhadap bentang pendek yang tidak lebih dari 2, tebal minimumnya tidak boleh kurang dari nilai berikut :

- a) Tanpa panel drop (drop panel) 125 mm
- b) Dengan panel drop (drop panel) 100 mm

## Kepala Kolom

Tujuan dari kepala kolom adalah untuk mendapatkan pertambahan keliling sekitar kolom untuk memindahkan geser dari beban lantai dan untuk menambah tebal dengan berkurangnya perimeter di dekat kolom. Dengan memisalkan garis maksimum 45<sup>0</sup> untuk distribusi dari geser kepala kolom. (Wang, 1989)

## **Drop Panel**

Drop panel merupakan pertambahan tebal pelat di dalam daerah kolom yang berfungsi sebagai penahan gaya geser utama yang menjadi bidang kontak antara pelat dan kolom.

#### Kekakuan Pelat Balok

Menurut SNI 2847-2013 Pasal 13.7.3 Perhitungan momen inersia pelat-balok harus memenuhi ketentuan berikut:

- a) Penentuan momen inersia slab-balok pada sebarang penampang di luar pertemuan (*joints*) atau kapital kolom menggunakan luas bruto beton diizinkan.
- b) Variasi pada momen inersia sepanjang sumbu slab-balok harus diperhitungkan.
- c) Momen inersia slab-balok dari pusat kolom ke muka kolom, brakit (*bracket*), atau kapital harus sama dengan momen inersia slab-balok pada muka kolom

#### Kekakuan Kolom

Untuk perhitungan kekakuan, momen inersia kolom didasarkan pada penampang kotornya. Maka jika terdapat kepala kolom pengaruh dimensinya harus digunakan untuk bagian kolom tersebut. kolom diasumsikan terjepit kaku di sepanjang tebal pelat

Kekakuan lentur kolom dinyatakan dengan

$$K_c = K \frac{E_{cc}I_c}{l_1} \tag{3}$$

#### Kekakuan Torsi

Menurut SNI 2847-2013 Pasal 13.7.5 komponen struktur punter harus diasumsikan mempunyai penampang konstan sepanjang panjangnya yang terdiri dari yang terbesar dari butir :

- a) Bagian slab yang mempunyai lebar sama dengan lebar kolom, brakit (bracket), atau kapital dalam arah bentang dimana momen ditentukan;
- b) Untuk konstruksi monolit atau komposit penuh, bagian slab yang ditetapkan dalam butir (a) ditambah bagian balok transversal di atas dan di bawah *slab*;
- Balok transversal mencakup bagian dari pelat pada tiap sisi balok sebesar proyeksi

balok yang berada di atas atau di bawah pelat, diambil yang terbesar tetapi tidak boleh lebih besar empat kali tebal pelat.

Kekakuan puntir dinyatakan dengan:

$$K_t = \sum \frac{9 E_{cs} C}{l_2 (1 - \frac{C_2}{l_2})^2}$$
 (4)

#### Kekakuan Kolom Ekivalen

Kelenturan kolom ekivalen dengan resiprokal (kebalikan) kekakuannya, seperti yang berikut ini:

$$\frac{1}{K_{ec}} = \frac{1}{\Sigma K_c} + \frac{1}{\Sigma K_t} \tag{5}$$

$$\frac{1}{K_{ec}} = \frac{1}{K_{ct} + K_{cb}} + \frac{1}{K_c + K_t}$$
 (6)

Dengan menyelesaikan rumus ini untuk kekakuan kolom ekuivalen

mengalikannya dengan 
$$K_c$$
 didapat :
$$K_{ec} = \frac{(K_{ct} + K_{cb}) + (K_t + K_t)}{(K_{ct} + K_{cb})(K_{ct} + K_{cb})}$$
(7)

#### Distribusi Faktor

Setelah nilai K<sub>ec</sub> diperoleh, faktor distribusi (DF) dapat dihitung sebagai berikut:

DF bagian tepi 
$$=\frac{K_{b1}}{K_{b1} + K_{b2} + K_{ec}}$$
 (8)  
DF bagian tengah  $=\frac{K_{b2}}{K_{b1} + K_{b2} + K_{ec}}$  (9)

DF bagian tengah = 
$$\frac{K_{b2}}{K_{b1} + K_{b2} + K_{ec}}$$
 (9)

#### **Metode Cross**

Menurut Jemy Wijaya, Fanywati Itang (2013) Dalam metode Cross (distribusi moment) terdapat beberapa pengertian sebagai berikut:

- Faktor pemindah/koefisien induksi (carry over factor) faktor pemindah terhadap perataan momen pada satu titik untuk mendapatkan momen pada ujung titik lainnya.
- Faktor distribusi (distribution factor) Perbandingan besaran momen yang terdistribusi pada batang-batang yang bertemu di satu titik atau koefisien distribusi untuk besaran momen-momen diterima batang-batang bertemu pada satu titik percabangan.
- Faktor kekakuan (stiffness factor) suatu faktor pengali yang didapat dari kekakuan balok untuk menentukan besarnya momen di satu titik yang diperlukan untuk berputar sudut dititik tersebut sebesar satu radial

Momen primer (fixed end moment) Besaran momen pada ujung balok akibat beban luar dan akibat pergoyangan.

#### **Momen Statis Total Terfaktor**

Menurut Mc.Cormac pada bukunya yang berjudul Desain Beton Bertulang, momen total Mo yang ditahan oleh pelat sama dengan jumlah momen negatif dan positif maksimum dalam bentang. Momen ini sama dengan momen total yang terjadi dalam balok tumpuan sederhana. untuk beban merata:

$$M_{o} = \frac{(W_{u}l_{2})(l_{n}^{2})}{8} \tag{10}$$

## Distribusi Momen Terfaktor Negatif dan **Positif**

Pada bentang interior, momen statis total, M<sub>o</sub> harus didistribusikan sebagai berikut: Momen terfaktor negative......0,65 Momen terfaktor positif ......0,35

Tabel 1 Distribusi Momen Bentang Total Pada Ujung Batang

|                                      | (1)            | (2)                              | (3)              | (4)                                            | (5)                |  |
|--------------------------------------|----------------|----------------------------------|------------------|------------------------------------------------|--------------------|--|
|                                      | Tepi eksterior | Slab dengan                      |                  | Slab tanpa balok di antara tumpuan<br>interior |                    |  |
|                                      | tak-terkekang  | balok di antara<br>semua tumpuan | Tanpa balok tepi | Dengan balok<br>tepi                           | terkekang<br>penuh |  |
| Momen terfaktor<br>negatif interior  | 0,75           | 0,70                             | 0,70             | 0,70                                           | 0,65               |  |
| Momen terfaktor<br>positif           | 0,63           | 0,57                             | 0,52             | 0,50                                           | 0,35               |  |
| Momen terfaktor<br>negatif eksterior | 0              | 0,16                             | 0,26             | 0,30                                           | 0,65               |  |

Sumber: (SNI 2847:2013)

## Distribusi Momen Terfaktor pada lajur

Lajur kolom harus diproporsikan untuk menahan bagian berikut dalam persen momen terfaktor negatif interior:

Tabel 2 Presentase momen rencana negatif interior vang ditahan oleh jalur kolom

| 101 Julis altalian oldi jarai k |     |     |     |  |  |  |  |  |
|---------------------------------|-----|-----|-----|--|--|--|--|--|
| $l_2/l_1$                       | 0.5 | 1.0 | 2.0 |  |  |  |  |  |
| $(\alpha l_2/l_1) = 0$          | 75  | 75  | 75  |  |  |  |  |  |
| $(\alpha l_2/l_1) \geq 0$       | 90  | 75  | 45  |  |  |  |  |  |

Sumber: (SNI 2847:2013)

Tabel 3 Presentase momen rencana negatif eksterior vang ditahan oleh jalur kolom

| onstone juing             | 5 0110011011      | 0.0 | ,   |     |
|---------------------------|-------------------|-----|-----|-----|
|                           |                   | 0.5 | 1.0 | 2.0 |
| $(\alpha l_2/l_1) = 0$    | $\beta_t = 0$     | 100 | 100 | 100 |
|                           | $\beta_t \ge 2.5$ | 75  | 75  | 75  |
| $(\alpha l_2/l_1) \geq 0$ | $\beta_t = 0$     | 100 | 100 | 100 |
|                           | $\beta_t \ge 2.5$ | 90  | 75  | 45  |

Sumber: (SNI 2847:2013)

Tabel 4. Presentase momen rencana positif

| jung anumum orem junum koromi |     |     |     |  |  |  |  |  |
|-------------------------------|-----|-----|-----|--|--|--|--|--|
| $l_2/l_1$                     | 0.5 | 1.0 | 2.0 |  |  |  |  |  |
| $(\alpha l_2/l_1) = 0$        | 60  | 60  | 60  |  |  |  |  |  |
| $(\alpha l_2/l_1) \ge 0$      | 90  | 75  | 45  |  |  |  |  |  |

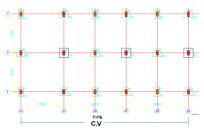
Sumber: (SNI 2847:2013)

## Distribusi Momen Terfaktor pada lajur tengah

Jalur tengah yang sejajar dan bersebelahan dengan tumpuan dinding pada tepi harus direncanakan terhadap momen dari setengah jalur tengah yang didapat dari baris pertama kolom interior. (Nawy,1998)

#### **METODOLOGI PENELITIAN**

## **Objek Penelitian**

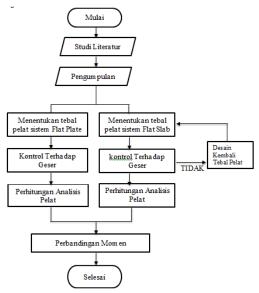

Dalam pengerjaan tugas akhir ini, objek penelitian yang akan dibahas adalah elemen pelat beton bertulang pada lantai ketiga bangunan Ruko yang terdiri dari 5 lantai. Bangunan ini memiliki panjang 21.5 m dan lebar 10 m. Pengumpulan data primer yang sudah ada yang berkaitan dengan bangunan Ruko berupa gambar denah kolom dan tinggi kolom.

#### Lokasi Penelitian

Lokasi kajian dari tugas akhir ini adalah bangunan Ruko di Jalan Ring Road 2

#### Data Bangunan:

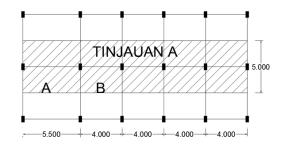
Denah Bangunan : Persegi Panjang
 Mutu Beton : 18.68 Mpa
 Mutu Baja : 400 Mpa
 Fungsi Bangunan : Ruko



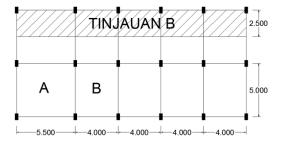

Gambar 3. Denah Kolom

#### **Prosedur Penelitian**

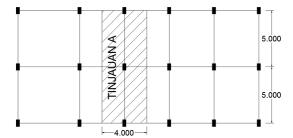
Prosedur yang dilakukan dalam penelitian ini yaitu menyiapkan data, studi literatur dan mendesain dan menganalisis *flat slab* dan *flat plate* sesuai dengan data pada


pelat yang terpasang pada bangunan kemudian membandingkan momen lentur dari kedua sistem pelat tersebut dengan menggunakan metode Rangka Ekivalen dan Metode Desain Langsung.

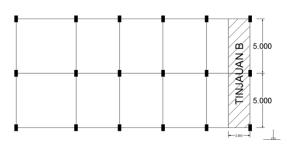



Gambar 4. Diagram Alir Penelitian

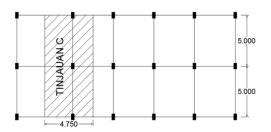
#### HASIL DAN PEMBAHASAN


Analisis dilakukan dengan meninjau beberapa tinjauan yaitu arah X tinjauan A dan B, dan arah Y tinjauan A, B, C, D dengan 2 metode analisis yaitu rangka ekivalen dan metode desain langsung.

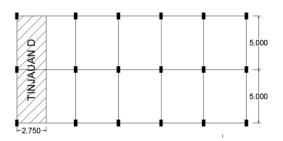



Gambar 4. Denah arah x tinjauan A




Gambar 5. Denah arah x tinjauan B




Gambar 6. Denah arah y tinjauan A



Gambar 7. Denah arah y tinjauan B



Gambar 8. Denah arah y tinjauan C



Gambar 9. Denah arah y tinjauan D

Hasil perbandingan momen dapat dilihat pada tabel-tabel berikut ini.

Tabel 5 Perbandingan momen *flat slab* dan *flat plate* arah x tinjauan A metode rangka ekivalen

|            |             | Flat Slab   |             |             | Flat Plate  |           |  |
|------------|-------------|-------------|-------------|-------------|-------------|-----------|--|
| Momen      | Bentang A-B |             | Bentang A-B |             |             |           |  |
|            | M (-) Eks   | M+          | M (-) int   | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 61.256      | 93.470      | 147.625     | 61.910      | 102.993     | 149.705   |  |
| M J Kolom  | 60.768      | 56.082      | 110.719     | 61.448      | 61.796      | 112.279   |  |
| M Balok    | 0           | 0           | 0           | 0           | 0           | 0         |  |
| M J Tengah | 0.488       | 37.388      | 36.906      | 0.462       | 41.197      | 37.426    |  |
|            | ]           | Bentang B-C | 1           |             | Bentang B-C |           |  |
|            | M (-) Eks   | M+          | M (-) int   | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 121.887     | 15.656      | 56.162      | 124.151     | 18.871      | 58.987    |  |
| M J Kolom  | 120.915     | 9.393       | 42.121      | 123.225     | 11.322      | 44.240    |  |
| M Balok    | 0           | 0           | 0           | 0           | 0           | 0         |  |
| M J Tengah | 0.971       | 6.262       | 14.040      | 0.927       | 7.548       | 14.747    |  |
|            | Bentang C-D |             |             | Bentang C-D |             |           |  |
|            | M (-) Eks   | M+          | M (-) int   | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 62.220      | 36.520      | 74.099      | 64.689      | 40.074      | 76.043    |  |
| M J Kolom  | 61.725      | 21.912      | 55.574      | 64.207      | 24.044      | 57.033    |  |
| M Balok    | 0           | 0           | 0           | 0           | 0           | 0         |  |
| M J Tengah | 0.496       | 14.608      | 18.525      | 0.483       | 16.029      | 19.011    |  |
|            | 1           | Bentang D-E | 3           |             | Bentang D-I | 3         |  |
|            | M (-) Eks   | M+          | M (-) int   | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 71.448      | 27.634      | 82.643      | 73.563      | 31.281      | 84.756    |  |
| M J Kolom  | 70.879      | 16.581      | 61.982      | 73.014      | 18.768      | 63.567    |  |
| M Balok    | 0           | 0           | 0           | 0           | 0           | 0         |  |
| M J Tengah | 0.569       | 11.054      | 20.661      | 0.549       | 12.512      | 21.189    |  |
|            | Bentang E-F |             | Bentang E-F |             |             |           |  |
|            | M (-) Eks   | M+          | M (-) int   | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 24.949      | 47.950      | 88.510      | 25.498      | 52.479      | 90.423    |  |
| M J Kolom  | 18.712      | 28.770      | 87.805      | 19.124      | 31.488      | 89.748    |  |
| M Balok    | 0           | 0           | 0           | 0           | 0           | 0         |  |
| M J Tengah | 6.237       | 19.180      | 0.705       | 6.375       | 20.992      | 0.675     |  |

Sumber: Hasil Penelitian

Tabel 6 Perbandingan momen *flat slab* dan *flat plate* arah x tinjauan A metode desain langsung

|            |             | Flat Slab   |           | Flat Plate  |             |           |  |
|------------|-------------|-------------|-----------|-------------|-------------|-----------|--|
| Momen      | Bentang A-B |             |           | Bentang A-B |             |           |  |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 44.227      | 91.993      | 123.836   | 46.661      | 97.055      | 130.651   |  |
| M J Kolom  | 43.864      | 55.196      | 92.877    | 46.313      | 58.233      | 97.988    |  |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.364       | 36.797      | 30.959    | 0.348       | 38.822      | 32.663    |  |
|            | l           | Bentang B-C | :         |             | Bentang B-C | 2         |  |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 58.218      | 31.348      | 58.218    | 61.422      | 33.073      | 61.422    |  |
| M J Kolom  | 57.769      | 18.809      | 40.753    | 60.948      | 19.844      | 46.066    |  |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.479       | 12.539      | 14.555    | 0.458       | 13.229      | 15.355    |  |
|            | Bentang C-D |             |           | Bentang C-D |             |           |  |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 58.218      | 31.348      | 58.218    | 61.422      | 33.073      | 61.422    |  |
| M J Kolom  | 57.769      | 18.809      | 40.753    | 60.948      | 19.844      | 46.066    |  |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.479       | 12.539      | 14.555    | 0.458       | 13.229      | 15.355    |  |
|            | I           | Bentang D-E | 3         | Bentang D-E |             |           |  |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 58.218      | 31.348      | 58.218    | 61.422      | 33.073      | 61.422    |  |
| M J Kolom  | 57.769      | 18.809      | 40.753    | 60.948      | 19.844      | 46.066    |  |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.479       | 12.539      | 14.555    | 0.458       | 13.229      | 15.355    |  |
|            | ]           | Bentang E-F |           |             | Bentang E-F | 1         |  |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 22.392      | 46.575      | 62.697    | 23.624      | 49.138      | 66.147    |  |
| M J Kolom  | 22.219      | 27.945      | 43.888    | 23.442      | 29.483      | 49.610    |  |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.184       | 18.630      | 15.674    | 0.176       | 19.655      | 16.537    |  |
| 0 1        | TT .        | 1 D         | 1'4'      |             |             |           |  |

Sumber: Hasil Penelitian

Tabel 7 Perbandingan momen *flat slab* dan *flat plate* arah x tinjauan B metode rangka ekivalen

|            |           | Flat Slab   |           | Flat Plate  |             |           |  |
|------------|-----------|-------------|-----------|-------------|-------------|-----------|--|
| Momen      | 1         | Bentang A-E | 3         | Bentang A-B |             |           |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 51.163    | 37.409      | 71.929    | 51.315      | 42.677      | 72.132    |  |
| M J Kolom  | 50.347    | 22.446      | 53.947    | 50.549      | 25.606      | 54.099    |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.815     | 14.964      | 17.982    | 0.766       | 17.071      | 18.033    |  |
|            | 1         | Bentang B-C | 2         | 1           | Bentang B-C |           |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 49.345    | 12.161      | 31.012    | 50.118      | 13.944      | 32.435    |  |
| M J Kolom  | 48.559    | 7.297       | 23.259    | 49.370      | 8.366       | 24.326    |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.786     | 4.865       | 7.753     | 0.748       | 5.577       | 8.109     |  |
|            | 1         | Bentang C-D | )         | Bentang C-D |             |           |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 34.431    | 16.688      | 36.873    | 35.577      | 18.488      | 37.886    |  |
| M J Kolom  | 33.882    | 10.013      | 27.655    | 35.046      | 11.093      | 28.415    |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.549     | 6.675       | 9.218     | 0.531       | 7.395       | 9.472     |  |
|            | ]         | Bentang D-E | 3         | Bentang D-E |             |           |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 35.762    | 15.334      | 38.249    | 36.815      | 17.148      | 39.329    |  |
| M J Kolom  | 35.192    | 9.201       | 28.687    | 36.266      | 10.289      | 29.497    |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.570     | 6.134       | 9.562     | 0.550       | 6.859       | 9.832     |  |
|            |           | Bentang E-F | ?         |             | Bentang E-F | •         |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 23.038    | 19.960      | 41.722    | 42.692      | 22.036      | 23.676    |  |
| M J Kolom  | 22.671    | 11.976      | 31.291    | 32.019      | 13.221      | 23.323    |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.367     | 7.984       | 10.430    | 10.673      | 8.814       | 0.353     |  |

Sumber: Hasil Penelitian

Tabel 8 Perbandingan momen *flat slab* dan *flat plate* arah x tinjauan B metode desain

| langsung   |             |             |           |             |             |           |
|------------|-------------|-------------|-----------|-------------|-------------|-----------|
|            | Flat Slab   |             |           | Flat Plate  |             |           |
| Momen      |             | Bentang A-I |           |             | Bentang A-E |           |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |
| Mu         | 22.114      | 45.996      | 61.918    | 23.330      | 48.527      | 65.325    |
| M J Kolom  | 21.932      | 27.598      | 46.439    | 23.150      | 29.116      | 45.728    |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |
| M J Tengah | 0.182       | 18.399      | 15.480    | 0.180       | 19.411      | 16.331    |
|            | I           | Bentang B-C |           | 1           | Bentang B-C | 1         |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |
| Mu         | 29.109      | 15.674      | 29.109    | 30.711      | 16.537      | 30.711    |
| M J Kolom  | 28.885      | 9.405       | 20.376    | 30.474      | 9.922       | 23.033    |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |
| M J Tengah | 22.461      | 6.270       | 7.277     | 23.697      | 6.615       | 7.678     |
|            | I           | Bentang C-E | )         | Bentang C-D |             |           |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |
| Mu         | 29.109      | 15.674      | 29.109    | 30.711      | 16.537      | 30.711    |
| M J Kolom  | 28.885      | 9.405       | 20.376    | 30.474      | 9.922       | 23.033    |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |
| M J Tengah | 22.461      | 6.270       | 7.277     | 23.697      | 6.615       | 7.678     |
|            | I           | Bentang D-E | 3         | 1           | Bentang D-E | 3         |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |
| Mu         | 29.109      | 15.674      | 29.109    | 30.711      | 16.537      | 30.711    |
| M J Kolom  | 28.885      | 9.405       | 20.376    | 30.474      | 9.922       | 23.033    |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |
| M J Tengah | 22.461      | 6.270       | 7.277     | 23.697      | 6.615       | 7.678     |
|            | Bentang E-F |             |           | Bentang E-F | •           |           |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |
| Mu         | 11.196      | 23.287      | 31.348    | 11.812      | 24.569      | 33.073    |
| M J Kolom  | 11.109      | 13.972      | 21.944    | 11.721      | 14.741      | 24.805    |
| M Balok    | 0           | 0           | 0         | 0           | 0           | 0         |
| M J Tengah | 8.639       | 9.315       | 7.837     | 9.114       | 9.828       | 8.268     |

Sumber: Hasil Penelitian

Tabel 9 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan A metode rangka ekivalen

|            |           | Flat Slab   |           |             | Flat Plate  |           |  |  |
|------------|-----------|-------------|-----------|-------------|-------------|-----------|--|--|
| Momen      | 1         | Bentang A-F | 3         | 1           | Bentang A-E | 3         |  |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |  |
| Mu         | 62.916    | 45.690      | 107.405   | 64.537      | 50.606      | 110.351   |  |  |
| M J Kolom  | 61.346    | 27.414      | 80.554    | 62.967      | 30.363      | 82.763    |  |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |  |
| M J Tengah | 1.570     | 18.276      | 26.851    | 1.570       | 20.242      | 27.588    |  |  |
|            | 1         | Bentang B-C |           | Bentang B-C |             |           |  |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |  |
| Mu         | 106.909   | 45.689      | 63.412    | 109.342     | 50.590      | 65.578    |  |  |
| M J Kolom  | 104.241   | 27.414      | 47.559    | 82.006      | 30.354      | 63.983    |  |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |  |
| M J Tengah | 2.668     | 18.276      | 15.853    | 27.335      | 20.236      | 1.596     |  |  |

Sumber: Hasil Penelitian

Tabel 10 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan A metode desain langsung

|            | ,         |             |           |             |             |           |  |
|------------|-----------|-------------|-----------|-------------|-------------|-----------|--|
|            |           | Flat Slab   |           |             | Flat Plate  |           |  |
| Momen      | I         | Bentang A-F | 3         | 1           | Bentang A-F | 3         |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 28.905    | 60.122      | 80.933    | 30.495      | 63.430      | 85.387    |  |
| M J Kolom  | 28.192    | 36.073      | 60.700    | 30.260      | 38.058      | 64.040    |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.712     | 24.049      | 20.233    | 0.235       | 25.372      | 21.347    |  |
|            | Ī         | Bentang B-C |           | Bentang B-C |             |           |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |
| Mu         | 28.905    | 60.122      | 80.933    | 30.495      | 63.430      | 85.387    |  |
| M J Kolom  | 28.192    | 36.073      | 60.700    | 30.260      | 38.058      | 64.040    |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |
| M J Tengah | 0.712     | 24.049      | 20.233    | 0.235       | 25.372      | 21.347    |  |

Sumber: Hasil Penelitian

Tabel 11 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan B metode rangka ekivalen

|            |           | CI,         | a vaici   | L.          |             |           |
|------------|-----------|-------------|-----------|-------------|-------------|-----------|
|            |           | Flat Slab   |           |             | Flat Plate  |           |
| Momen      | I         | Bentang A-E | 3         | 1           | Bentang A-F | 3         |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |
| Mu         | 31.848    | 23.130      | 52.743    | 32.643      | 25.597      | 54.214    |
| M J Kolom  | 29.781    | 13.878      | 39.557    | 31.054      | 15.358      | 40.661    |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |
| M J Tengah | 0.795     | 9.252       | 13.186    | 1.588       | 10.239      | 13.554    |
|            | 1         | Bentang B-C | }         | Bentang B-C |             |           |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |
| Mu         | 31.314    | 22.561      | 54.414    | 32.411      | 25.004      | 55.632    |
| M J Kolom  | 23.485    | 13.537      | 53.056    | 30.834      | 15.002      | 41.724    |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |
| M J Tengah | 7.828     | 9.024       | 1.358     | 1.577       | 10.001      | 13.908    |

Sumber: Hasil Penelitian

Tabel 12 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan B metode desain

langsung Flat Plate Flat Slab M (-) Fks M+ M (-) int M (-) Eks M+ 14 452 30.061 40 467 15.248 31 715 42.693 M J Kolon 18.037 30.350 15.130 19.029 M Balok 10.117 12.024 0.118 12.686 M J Tengah Bentang B-0 ntang B-0 M (-) Eks M+ M (-) int M (-) Eks M J Kolom 15.130 0.356 12.024 10.117 0.118

Sumber: Hasil Penelitian

Tabel 13 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan C metode rangka ekivalen

|            |           | Flat Slab   |           | Flat Plate  |             |           |  |  |
|------------|-----------|-------------|-----------|-------------|-------------|-----------|--|--|
| Momen      | 1         | Bentang A-I | 3         | 1           | Bentang A-B |           |  |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |  |
| Mu         | 74.428    | 54.048      | 128.244   | 76.366      | 59.881      | 131.742   |  |  |
| M J Kolom  | 72.570    | 32.429      | 96.183    | 74.801      | 35.928      | 98.806    |  |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |  |
| M J Tengah | 1.858     | 21.619      | 32.061    | 1.565       | 23.952      | 32.935    |  |  |
|            | 1         | Bentang B-C |           | Bentang B-C |             |           |  |  |
|            | M (-) Eks | M+          | M (-) int | M (-) Eks   | M+          | M (-) int |  |  |
| Mu         | 75.589    | 54.463      | 126.254   | 78.150      | 60.288      | 129.144   |  |  |
| M J Kolom  | 56.691    | 32.678      | 123.103   | 76.549      | 36.173      | 96.858    |  |  |
| M Balok    | 0         | 0           | 0         | 0           | 0           | 0         |  |  |
| M J Tengah | 18.897    | 21.785      | 3.151     | 1.601       | 24.115      | 32,286    |  |  |

Sumber: Hasil Penelitian

Tabel 14 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan C metode desain langsung

| Momen      | Flat Slab   |        |           | Flat Plate  |        |           |
|------------|-------------|--------|-----------|-------------|--------|-----------|
|            | Bentang A-B |        |           | Bentang A-B |        |           |
|            | M (-) Eks   | M+     | M (-) int | M (-) Eks   | M+     | M (-) int |
| Mu         | 34.324      | 71.395 | 96.108    | 36.213      | 75.323 | 101.397   |
| M J Kolom  | 33.478      | 42.837 | 72.081    | 35.934      | 45.194 | 76.048    |
| M Balok    | 0           | 0      | 0         | 0           | 0      | 0         |
| M J Tengah | 0.846       | 28.558 | 24.027    | 0.280       | 30.129 | 25.349    |
|            | Bentang B-C |        |           | Bentang B-C |        |           |
|            | M (-) Eks   | M+     | M (-) int | M (-) Eks   | M+     | M (-) int |
| Mu         | 34.324      | 71.395 | 96.108    | 36.213      | 75.323 | 101.397   |
| M J Kolom  | 33.478      | 42.837 | 72.081    | 35.934      | 45.194 | 76.048    |
| M Balok    | 0           | 0      | 0         | 0           | 0      | 0         |
| M J Tengah | 0.846       | 28.558 | 24.027    | 0.280       | 30.129 | 25.349    |

Sumber: Hasil Penelitian

Tabel 15 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan D metode rangka

|            |             | е           | Kivaie    | n           |        |           |
|------------|-------------|-------------|-----------|-------------|--------|-----------|
| Momen      | Flat Slab   |             |           | Flat Plate  |        |           |
|            | Bentang A-B |             |           | Bentang A-B |        |           |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+     | M (-) int |
| Mu         | 37.638      | 27.334      | 63.079    | 44.682      | 35.037 | 75.063    |
| M J Kolom  | 36.698      | 16.400      | 47.309    | 43.101      | 21.022 | 56.297    |
| M Balok    | 0           | 0           | 0         | 0           | 0      | 0         |
| M J Tengah | 93.944      | 10.934      | 15.770    | 1.581       | 14.015 | 18.766    |
|            | 1           | Bentang B-C |           | Bentang B-C |        |           |
|            | M (-) Eks   | M+          | M (-) int | M (-) Eks   | M+     | M (-) int |
| Mu         | 37.368      | 26.923      | 64.170    | 44.769      | 34.537 | 75.976    |
| M J Kolom  | 28.026      | 16.154      | 62.569    | 43.852      | 20.722 | 56.982    |
| M Balok    | 0           | 0           | 0         | 0           | 0      | 0         |
| M J Tengah | 9.342       | 10.769      | 1.602     | 1.584       | 13.815 | 18.994    |

Sumber: Hasil Penelitian

Tabel 16 Perbandingan momen *flat slab* dan *flat plate* arah y tinjauan D metode desain

| langsung   |             |        |           |             |        |           |  |
|------------|-------------|--------|-----------|-------------|--------|-----------|--|
|            | Flat Slab   |        |           | Flat Plate  |        |           |  |
| Momen      | Bentang A-B |        |           | Bentang A-B |        |           |  |
|            | M (-) Eks   | M+     | M (-) int | M (-) Eks   | M+     | M (-) int |  |
| Mu         | 17.416      | 36.226 | 48.765    | 15.869      | 33.007 | 44.433    |  |
| M J Kolom  | 16.987      | 21.735 | 36.574    | 15.746      | 19.804 | 33.325    |  |
| M Balok    | 0           | 0      | 0         | 0           | 0      | 0         |  |
| M J Tengah | 0.429       | 14.490 | 12.191    | 0.123       | 13.203 | 11.108    |  |
|            | Bentang B-C |        |           | Bentang B-C |        |           |  |
|            | M (-) Eks   | M+     | M (-) int | M (-) Eks   | M+     | M (-) int |  |
| Mu         | 17.416      | 36.226 | 48.765    | 15.869      | 33.007 | 44.433    |  |
| M J Kolom  | 16.987      | 21.735 | 36.574    | 15.746      | 19.804 | 33.325    |  |
| M Balok    | 0           | 0      | 0         | 0           | 0      | 0         |  |
| M J Tengah | 0.429       | 14.490 | 12.191    | 0.123       | 13.203 | 11.108    |  |

Sumber: Hasil Penelitian

Perbandingan Analisis Perhitungan Flat Slab dan Flat Plate

- Dalam perhitungan ketahanan geser dari kedua sistem pelat ini, *Flat Plate* hanya diperhitungkan geser pada pelat sedangkan pada *Flat Slab* dihitung geser pada pelat dan geser pada drop panel.
- Penentuan tebal pelat digunakan tabel tebal minimum untuk pelat berdasarkan SNI 2847-2013, Flat Plate menggunakan ketentuan pada tabel tanpa penebalan panel, dan Flat Slab menggunakan ketentuan pada tabel dengan penebalan panel.
- Untuk menghitung koefisien kekakuan pelat-balok Flat Plate, digunakan tabel distribusi momen konstan untuk pelat tanpa drop panel. Sedangkan untuk *Flat Slab* digunakan tabel distribusi momen konstan untuk pelat dengan drop panel.
- Kekakuan kolom dari kedua sistem pelat ini dihitung dengan rumus yang sama, hanya perhitungan inersia kolom yang membedakan dimana inersia Flat Plate dihitung dari dasar kolom lantai bawah ke ujung atas kolom, dan inersia Flat Slab dihitung dengan tambahan kepala kolom pada keempat sisi kolom.

## PENUTUP

#### Kesimpulan

Berdasarkan hasil analisis, dapat diperoleh kesimpulan sebagai berikut :

- Suatu elemen pelat yang dianalisis menggunakan metode Rangka Ekivalen dan Desain Langsung dengan bentang yang sama, sistem lantai *Flat Plate* memiliki momen lapangan yang lebih besar di bandingkan dengan *Flat Slab*, dikarenakan sistem *Flat Slab* dengan pertebalan dan kepala kolom membuat tumpuan semakin kaku dan kuat menahan gaya yang ada.
- Dari kedua sistem pelat ini menunjukkan bahwa semakin jauh bentang antar kolom, maka momen lapangan yang dihasilkan akan jauh berbeda dengan bentang yang lainnya.
- Perbandingan analisis dari Flat Plate dan Flat Slab terletak pada penambahan drop panel dan kepala kolom pada

sistem Flat Slab yang mempengaruhi perhitungan tebal pelat, kekakuan pelatbalok, kekakuan kolom dan ketahanan geser. Sehingga analisis perhitungan Flat Slab akan berbeda dengan Flat Plate yang tidak diberik pertebalan dan kepala kolom. Elemen Pelat yang telah dianalisis dinyatakan mampu untuk menahan momen lentur dan gaya geser yang bekerja pada sistem pelat Flat Plate maupun Flat Slab.

#### Saran

- Untuk penelitian selanjutnya disarankan untuk melakukan perbandingan dengan menggunakan program untuk mengetahui perbandingan dari hitungan konvensional dan dari hitungan program.
- Dapat diteliti dengan bentang yang lebih besar dan dibandingkan lagi dengan jenis sistem pelat yang lainnya.

## **DAFTAR PUSTAKA**

- Badan Standardisasi Nasional. 2013. *Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain*, SNI 03-1727-2013. Bandung: BSN.
- Badan Standarisasi Nasional. 2013. *Tata Cara Perencanaan Struktur Beton untuk Bangunan Gedung*, SNI 2847:2013. Jakarta, Standar Nasional Indonesia.
- Hassoun M. Nadim, Akthem Al-Manaseer, 2015. Structural Concrete- Theory and Design *6th Edition*. John Wiley & Sons, New Jersey.
- MacGregor, James. dan James K. Wight (2011). Reinforced Concrete: Mechanic & Design Sixth Edition. New Jersey: Pearson
- McCormac, Jack C. 2003. Desain Beton Bertulang. Jakarta: Erlangga
- Nawy, Edward G. 1998. Beton Bertulang Suatu Pendekatan Dasar. Bandung: Refika Aditama.
- Sudarmoko. 1996. Perancangan dan Analisis Pelat Beton Bertulang Berdasarkan SNI 03-2847-1992. Universitas Gadjah Mada. Yogyakarta.
- Wang C.K, Charles .G Salmon. 1989. Disain Beton Bertulang. Jakarta: Erlangga.
- Wijaya J, Itang F. 2014. Penggunaan Metode Cross Pada Struktur Portal Bergoyang Statis Tak Tentu dengan Kekakuan Tidak Merata Dalam Satu Balok dan Kolom. Universitas Tarumanegara. Jakarta

Halaman ini sengaja dikosongkan