

The Effect of Salinity on the Growth of *Kappaphycus alvarezii*

Sandra Tilaar¹, Stenly Wullur¹, Esther Dellyani Angkow¹

Aquatic Resource Management, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, Indonesia

*Corresponding author: sandra_tilaar@unsrat.ac.id

Manuscript received: 19 Oct. 2024. Revision accepted: 29 Jan. 2025

Abstract

This study aims to determine the effect of different salinities on the growth of *K. alvarezii*. This seaweed was obtained from Tumbak, Southeast Minahasa Regency—medium sea water for planting media in Malalayang water, Malalayang District, Manado City. The treatments were on salinity 25 ppt for the lower range, and 35 ppt for the higher range. The results showed that at a salinity of 25 ppt, a bacterial colony was obtained, whereas at a salinity of 35 ppt, only a stress condition was observed. The specific growth rate results for salinity levels of 25 and 35 ppt were significantly slower compared to the control treatment. The method used is algae cultivation in controlled containers, and bacterial isolation from seaweed thallus infected with ice-ice was carried out on SWC (Sea Water Complete) agar and TCBS (Thiosulphate Citrate Bile Salt) agar. This suggests that salinity is the key factor in seaweed growth. From the results, we can conclude that at salinities of 25 ppt and 35 ppt, the seaweed growth is not maximal because of bleaching. This condition could be a trigger for the growth of bacteria in lower salinity (25 ppt).

Key words: *Kappaphycus alvarezii*, salinity, bacteria, seaweed.

INTRODUCTION

Seaweed production in North Sulawesi has drastically decreased since the end of 2000 (Mudeng *et al.*, 2014). The function of seaweed is to provide food for fish and invertebrates, especially the young thallus (Rahim *et al.*, 2016), and indirectly as food for humans, cosmetics, medicine, fertilizer, textile, biofilm, etc. (Soenardjo, 2011; Surni, 2014). Seaweed, as the main commodity that is cultivated in Indonesia, is *Eucheuma cottonii*, later known as *Kappaphycus alvarezii*. The key factor of seaweed cultivation besides its cultivation method is the quality of its environment, especially the salinity (Arisandi *et al.*, 2011). Salinity is assumed could contribute to bacterial disease in seaweed, which is known as the 'ice-ice' disease (Ngangi 2012). Thus, this research aims to see the effect of different salinities on the growth of *Kappaphycus alvarezii* in the laboratory.

RESEARCH OBJECTIVES

The purpose of this study is to determine the effect of different salinity levels (25 and 35 ppt) on the growth of *K. alvarezii*.

Materials and Research Methods

Culture of algae

This *K. alvarezii* was obtained from Tumbak, Southeast Minahasa Regency, North Sulawesi (Figure 1). The algae were first acclimatized with an initial weight of 100 g/L. Sea water used for culture media is taken from Malalayang Beach, Manado City. The treatment salinity tests are on 25 and 35 ppt for 15 days. This is based on Aris (2011) result. The water quality parameters measured were salinity, temperature, pH, light intensity, dissolved oxygen (DO), and carbon dioxide (CO₂). The change of water is done every seven days by replacing as much as 70% (Suniti *et al.*, 2012). The water salinity was controlled twice daily, and the observation of seaweed growth was also.

Bacterial Isolation Technique

Isolation of bacteria from seaweed thallus infected with ice-ice was carried out on SWC (Sea Water Complete) agar and TCBS (Thiosulphate Citrate Bile Salt) agar. The bleaching thallus was taken from the culture media, rinsed using sterile seawater. Hence, by using aseptic technique, the sample was homogenized to obtain a free colony of the bacteria. A sample dilution is performed using sterile

seawater. Furthermore, each 150 μ l of dilution sample was transferred to L-glass and incubated at 37 °C for 48 hours. A growing colony of bacteria was observed.

Each bacteria-free colony that grows was characterized based on morphological characteristics (Leboffe and Pierce, 2012).

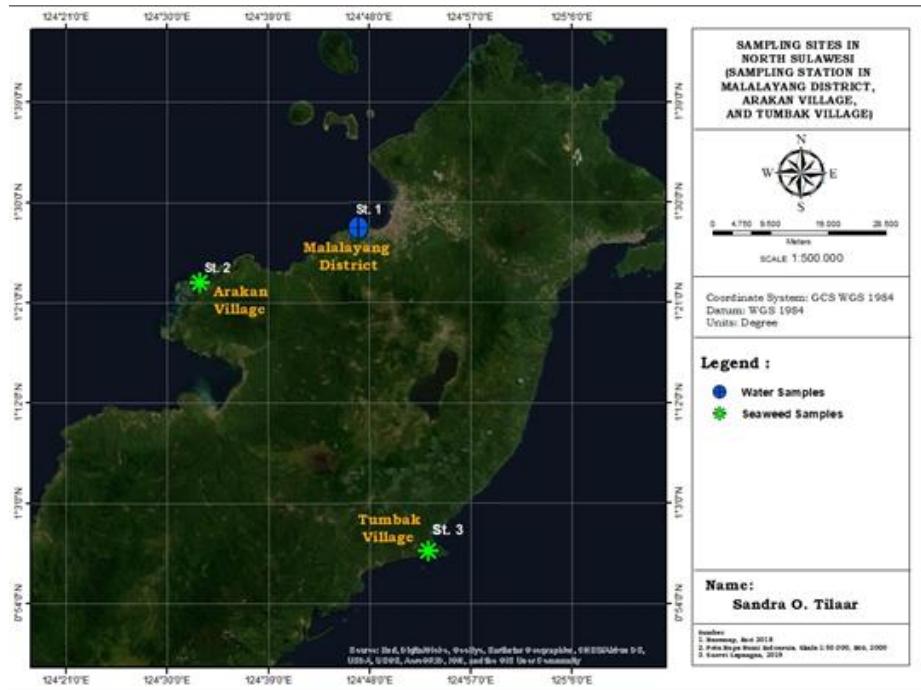


Figure 1. Sampling location of *K. alvarezii*.

Statistical analysis

Every 3 days, we observed and measured the specific growth rate of the thallus of *K. alvarezii* (Guo et al., 2014), and the effect of treatments was analyzed by ANOVA using SPSS 24.

RESULTS AND DISCUSSION

Contamination of the 'ice-ice' disease on algae

Morphological observation on *K. alvarezii* at salinity 25 ppt was 3 times, and bleaching happened on day 7 and day 9. Meanwhile, bleaching due to salinity 35ppt occurred on day 10 up to day 14. On a salinity of 25 ppt, the thallus showed white blots and faded. The fading of the thallus color at 25 and 35 ppt indicates the occurrence of the osmosis process, as a result of a more concentrated solution in the culture medium fluid. The ice-ice disease causes the growth of *K. alvarezii* to be very slow (Vairappan et al., 2010, and Arisandi et al., 2013). Thallus has suffered a fracture and impaired photosynthesis,

and biomass weight has been reduced to 60-80% (Figure 2).

The disruption of the cell wall of plants is influenced by the role of the Golgi body in the process of cell osmoregulation. One of the functions of a Golgi body is to bring the material into the plasma membrane (Juwono and Juniarto, 2003). High salinity causes the Golgi body to be unable to balance the concentration of fluid in the cell with the fluid concentration outside the cell. In the end, fluid cells are absorbed into the environment, so that the cell shrinks from its previous size.

Choi et al. (2011) and Arisandi et al. (2011) found that water quality parameters are very responsible for the growth, the formation of thallus, and the morphogenetic development of seaweed is very strongly dependent on salinity due to osmoregulation occurring in the cell. Generally, seaweed has a low salinity tolerance to changes in salinity. It was found that *K. alvarezii* is not resistant to lower salinity (25 ppt). The stress caused

by a sudden change in environmental conditions, especially salinity, water temperature, and light intensity, could stimulate ice-ice disease. Stress is characterized by the discoloration of thallus, which is an early symptom of seaweed that has suffered from the disturbance of ice-ice disease. Then, along with time, the tip of the thallus becomes

white and finally turns out to be rotten (Musa et al., 2008). On the bacterial isolation result, salinity 25 ppt treatment, we found bacterial isolates (Figure 3). This bacterium will further worsen the growth rate of seaweed cultivation (Faturrahman et. al. 2012). At a salinity of 35 ppt, we did not find bacteria, only showing a stress condition

Figure 2. The appearance of thallus in the control treatment (1a) and (1b) in the salinity treatment

Figure 3. Bacterial isolation result

According to Arisandi et al (2011), seaweed will experience slow growth when salinity is below 25 ppt or higher than 35 ppt. Hurtado et al. (2009) studied that the slow growth of thallus can be caused by nutrient absorption is not optimal. The difference in salinity affects the physiological and biochemical mechanisms, due to the process of change in osmosis pressure, and disrupts the role of cell membranes in the nutrient transport process. This salinity disturbance often inhibits the growth of seaweed, affects the

pattern of branches, and initiates the alteration of the chemical composition (Choi et al. 2010).

The ANOVA analysis (Table 1) of the specific growth rate showed that different salinity treatments did not affect the growth of the seaweed *K. alvarezii*. The result of specific growth on the salinity difference is very obvious. In salinity 25 and 35 ppt treatment, the alga's weight is lost. Most macroalgae or seaweed have a low tolerance to changes in salinity (Fiett, 2012).

ANOVA

Growth

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	314.000	2	157.000	78.500	.000
Within Groups	12.000	6	2.000		
Total	326.000	8			

Growth

Duncan^a

Treatment	N	Subset for alpha = 0.05	
		1	2
B	3	82.0000	
A	3	83.0000	
K	3		95.0000
Sig.		.420	1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

ANOVA

Growth

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	314.000	2	157.000	78.500	.000
Within Groups	12.000	6	2.000		
Total	326.000	8			

Growth

Duncan^a

Treatment	N	Subset for alpha = 0.05	
		1	2
B	3	82.0000	
A	3	83.0000	
K	3		95.0000
Sig.		.420	1.000

Means for groups in homogeneous subsets are displayed.

b. Uses Harmonic Mean Sample Size = 3.000.

CONCLUSION

From the results, we can conclude that at salinity 25 ppt and 35 ppt, the seaweed growth is not maximal, because of bleaching. This condition could be a trigger for the growth of bacteria in lower salinity (25 ppt).

REFERENCES

Arisandi A, Marsoedi, Nursyam H, and Sararise A. 2011. Different effects of salinity on morphology, size, and number of cells, growth, and yield of the *Karagaphycus alvarezii*. Journal of Marine Sciences. Vol. 16 (3) 143-150. ISSN 0853-7291. University of

Brawijaya, Malang

Araujo.M.A.d.S., Saoza A. K. P, SaozaL.I.o.D., MaranhaoF.C.d. A, Sant'ana A.E.G. 2012. Antifungal Activities of Different Extracts of Marine Macroalgae Against Dermatophytes and Candida Species, *Mycopathologia* Candida Species. 223-232 Malang.

Aris, M. 2011. Identification, pathogenicity of bacteria and utilization of the 16SrRNA gene for the detection of Ice-Ice disease at the cultivation of seaweed (*Kappaphycus alvarezii*) Bogor (ID): Bogor Agricultural University.

Choi, T.S., E.J. Kang, J.H. Kim, & K.Y. Kim. 2010. Effect of salinity on growth and nutrient uptake of *Ulva pertusa* (Chlorophyta) from an eelgrass bed. *Algae*, 25 (1): 17-25 page

Department of Fisheries and Maritime of Sulawesi Selatan Province. 2015. *Fisheries statistics*, SulawesiSelatan.

Fiett, P.P. 2014. Salinity Tolerance and Osmoregulatory Function of Mannitol in Danish Ecotype of *Saccharina latissima*. Department of Environmental, Social and Spatial Change (ENSPAC), Roskilde University 1-20 pp.

Gerung GS. and Ngangi ELA. 2017. Grand Design of North Sulawesi Marine Education Center Development Area. FPIK Unsrat and DKP North Sulawesi. Manado.

Guo, H., J. Yao., Z. Sun and D. Duan. 2014a. Effect of Temperature, Irradiance on the Growth of the Green Alga *Caulerpa lentillifera* (*Bryopsidophyceae*, *Chlorophyta*). *Journal of Applied Algology*. 27 (2): 879-885.

Hurtado, A.Q., D.A. Yunque, K. Tibubos and A.T. Critchley. 2009. Use of the Acadian marine plant extract powder from *Ascophyllum nodosum* in tissue culture of *Kappaphycus* varieties. *Journal of Applied Phycology* 21: 633–639 pages

Juwono& A. Z. Juniarto, 2003. Cell Biology.Medical Book publishers.EGC. Semarang. 98 pages.

Largo, D.B. Fukami, K. Nishijima, T., and Ohno, M. 2012. Laboratory-Induced Development of the ice-ice Disease of The Farmed Red Algae *Kappaphycus alvarezii* and *Euchemadenticulatum* (*Solieriaceae*, *Gigartinales*, *Rhodophyta*). *J. ApplPhycol*. 7:539 543.

Leboffe, M. J, and B. E. Pierce. 2012. Brief Microbiology. Laboratory Theory & Application 2nd Edition. Englewood: Morton Publishing. Pearson Education, Inc. San Francisco. 144pages

Joppy D. Mudeng, Edwin L.A. Ngangi. 2014. Culture pattern of seaweed *Kappaphycus Alvarezii* at Nain Island Regency of North Minahasa. [E-Journal].Universitas Sam Ratulangi.

Musa, N.& L.S. Wei. 2008. Bacteria Attached on Cultured Seaweed *Gracilariachangii* at Mangabang Telipot, Terengganu. *Academic Journal of Plant Sciences*, 1 (1): 01-04.

Nana, Jumriadi, Rimmer, M. Raharjo, S. 2012. Lawi-Lawi cultivation (*Caulerpa* sp.) in Tambak as a diversified aquaculture effort. *Research Journal of Aquaculture*.Makassar. Hal. 2-20

NuningMahmudah Noor. (2015). The Water Bodies Compatibility Analysis for Culturing Brown Seaweed *Kappaphycus alvarezii* in Ketapang Seashore, South Lampung. *The MaspariJournal* .96 page.

Rahim, A. and Hastuti, D. R. D. (2016). The revenue determinant of the traditional capture fishermen West Coastal area of Barru Regency. *Journal of Maritime Socio-economics and fisheries*. 11 (1): 75-88

Sahabati S, Mudeng J. D and Mondoringin L. L. J. J. (2016). The growth of *Kappaphycus alvarezii* seaweed is cultivated in an early weight net bag in Talengen Bay of Sangihe Island. *Jurnal Cultivation* 4 (3): 1621 SNI.

Soenardjo, N. (2011). Applications

Seaweed Cultivation
Eucheumacottonii (Weber van
Bosse) Method Net Basis Release
(Net Bag) Model Cidaun.
Oceanography Bulletin Marina.Vol 1:
36-44.

Suniti, N and I.K. Suada. (2012). The in
vitro seaweed culture (*Caulerpa
Lentillifera*) and identification of the
associated microbial type. J.
Agrotrop. 2 (1): 85-89.

Surni, Wa. 2014. Growth of Seaweed (*E.
cottonii*) in Different Seawater Depths
in Kotania Hamlet, Eti Village, West
Seram District, West Seram District.
Biopendix1 (1).

Triana. H., Widayastuti, U., Tenriulo, A.
(2016). *Regeneration and duplication
of seaweed Kappaphycus alvarezii.
The transformation of Gene
Superoxide Dismutase (MASOD).*
Research Journal of Aquaculture, 11
(4): 321-320.

Vairappan, C.S., Ishi, T., Lee. T.K., Suzuki.
M and Zhaoqi Z. (2010), Antibacterial
activities of a new brominated
diterpenoid from Bormeon Laurencia
spp. Marine Drugs 8.1743-1749.