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Abstrak

Gelombang laut merupakan fenomena alam yang dibangkitkan oleh angin dan memiliki peran penting
dalam rekayasa pantai, perikanan, serta transportasi maritim. Informasi tinggi gelombang sangat
diperlukan, namun sifat stokastik gelombang laut membuat prediksinya masih menjadi tantangan.
Penelitian ini bertujuan mengembangkan model prakiraan tinggi gelombang signifikan menggunakan
algoritma Long Short-Term Memory (LSTM) di perairan Kabupaten Bolaang Mongondow Utara, Sulawesi
Utara. Dataset yang digunakan berasal dari ERAS berupa tinggi gelombang signifikan (Hgzr4s)), komponen
angin zonal-meridional yang dikonversi menjadi Hyping), serta data altimetri untuk validasi. Model LSTM
dilatih pada data 1998-2021, divalidasi 2022, dan diuji 2023 dengan horizon prediksi 1 hari. Hasil
menunjukkan bahwa model mampu memprediksi tinggi gelombang signifikan dengan baik. Evaluasi
menggunakan data uji menghasilkan nilai kesalahan rendah, dengan RMSE dan MAE pada kisaran
sentimeter. Validasi terhadap data altimetri memperlihatkan kinerja lebih baik pada HyEras) (RMSE 0,282
m; MAE 0,235 m; MAPE 37,98%) dibanding Hyping (RMSE 0,460 m; MAE 0,434 m; MAPE 78,34%).
Model juga berhasil merepresentasikan variabilitas musiman sesuai pola aktual. Hasil ini menunjukkan
bahwa metode LSTM efektif untuk peramalan tinggi gelombang signifikan dan berpotensi mendukung
sistem peringatan dini serta perencanaan wilayah pesisir di Indonesia.

Kata kunci: deep learning, LSTM, peramalan gelombang, ERAS, altimetri

1. Pendahuluan
1.1.  Latar belakang

Kemampuan untuk memprediksi tinggi gelombang laut secara akurat sangat penting dalam
pengelolaan wilayah pesisir dan peringatan dini bencana maritim. Metode prediksi tradisional
seperti Darbyshire dan SMB (Sverdrup-Munk-Bretscheider) menggunakan pendekatan empiris
berbasis rumus yang mempertimbangkan kecepatan angin, durasi, dan fefch untuk
memperkirakan tinggi gelombang. Namun, metode ini memiliki keterbatasan dalam menangani
data deret waktu yang kompleks, non-linier, serta kurang mampu menangkap dinamika sistem
laut yang berubah secara spasial dan temporal.

Di sisi lain, kemajuan teknologi kecerdasan buatan telah memungkinkan pengembangan
model prediksi yang lebih akurat dan adaptif. Salah satu pendekatan yang menjanjikan adalah
Long Short-Term Memory (LSTM), yang merupakan varian dari Recurrent Neural Network
(RNN). LSTM dirancang untuk mengingat hubungan jangka panjang dalam data deret waktu dan
terbukti efektif untuk memodelkan sistem kompleks yang bergantung pada data historis, termasuk
dalam bidang oseanografi dan atmosfer

Berdasarkan hal tersebut, penelitian ini bertujuan untuk menerapkan metode LSTM dalam
peramalan tinggi gelombang laut dan membandingkan hasil prediksinya dengan data observasi
dari satelit altimetri sebagai validasi.
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1.2.  Rumusan Masalah

1. Bagaimana implementasi metode Long Short-Term Memory (LSTM) dalam peramalan tinggi
gelombang laut di wilayah perairan Bolaang Mongondow Utara?

2. Bagaimana tingkat akurasi hasil prediksi tinggi gelombang laut yang dihasilkan oleh model
LSTM jika dibandingkan dengan data observasi altimetri?

3. Sejauh mana model LSTM mampu merepresentasikan dinamika tinggi gelombang laut
berdasarkan data historis dan data observasi satelit?

1.3.  Batasan Penelitian

1. Data yang digunakan terbatas pada (i) reanalisis ERA5 SWH (swh), (ii) komponen angin u/v
ERAS untuk membentuk Huing), dan (iii) observasi satelit altimetri sebagai pembanding.

2. Penelitian difokuskan pada wilayah perairan Bolaang Mongondow Utara, Provinsi Sulawesi
Utara.

3. Model LSTM yang dikembangkan hanya digunakan untuk prediksi tinggi gelombang dan
tidak mencakup parameter oseanografi lainnya.

4. Validasi dilakukan hanya menggunakan data altimetri yang tersedia selama periode tertentu.

1.4.  Tujuan Penelitian

1. Menerapkan metode Long Short-Term Memory (LSTM) untuk melakukan prediksi tinggi
gelombang laut di wilayah perairan Bolaang Mongondow Utara.

2. Melakukan validasi hasil prediksi tinggi gelombang menggunakan data observasi satelit
altimetri.

3. Menganalisis performa model LSTM dalam merepresentasikan kondisi aktual gelombang laut
berdasarkan data historis dan data observasi.

1.5.  Manfaat Penelitian

1. Memberikan alternatif metode prediksi tinggi gelombang laut berbasis kecerdasan buatan.
2. Mendukung sistem peringatan dini dan perencanaan wilayah pesisir.
3. Menyediakan informasi akurat bagi pelayaran dan kegiatan kelautan lainnya.

1.6. Lokasi Penelitian

Penelitian ini dilakukan di wilayah perairan Bolaang Mongondow Utara, Provinsi Sulawesi
Utara, Indonesia. Wilayah ini memiliki karakteristik kelautan yang dinamis dan relevan untuk
kajian prediksi gelombang laut karena berada di kawasan yang rawan terhadap gelombang tinggi
dan memiliki aktivitas perikanan serta pelayaran yang cukup tinggi. Koordinat umum wilayah
penelitian berkisar antara 0,5° hingga 1,5° LU dan 123° hingga 124° BT.

2. Metode Penelitian
2.1. Lokasi Penelitian dan Pengumpulan Data

Wilayah penelitian berlokasi di perairan pesisir Bolaang Mongondow Utara, Provinsi
Sulawesi Utara, Indonesia, dengan titik pusat penelitian pada koordinat sekitar 0.8978° LU dan
123.4590° BT. Lokasi ini mencakup pesisir Kecamatan Bintauna dan sekitarnya, yang
menghadap langsung ke Laut Sulawesi.

Untuk keperluan prediksi tinggi gelombang signifikan, digunakan data komponen angin
zonal (u;9) dan meridional (v;), serta data tinggi gelombang signifikan (swh) dengan grid 0,5°
selama 1998-2023 yang bersumber dari reanalisis ERAS ECMWF. Nilai pada koordinat studi
(0,8978° LU, 123,4590° BT) diperoleh melalui interpolasi bilinear ke titik tersebut, kemudian
diagregasi menjadi rerata harian. Sebagai data pembanding, digunakan data tinggi gelombang
signifikan dari satelit altimetri yang diperoleh dari CMEMS, produk Level-3 SWH (variabel
VAVH) untuk periode September—Desember 2023.
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Gambar 1. Lokasi Penelitian
(Sumber: QGIS 3.40 dan Google Earth Pro)

2.2.  Bagan Alir

Metode penelitian pada Tugas Akhir ini disusun ke dalam suatu bagan alir. Bagan alir
tersebut dapat dilihat pada Gambar 2.

2.3.  Pra-pemrosesan Data
2.3.1. Pengkonversian Komponen u;g dan vig

Pembentukan tinggi gelombang signifikan (H,) dari angin (Hming) menggunakan
komponen angin 10 m ERAS (u10, v10), Kecepatan angin (Uo) dihitung sebagai:

_ / 2 2
Uio = |uio + vip

Arah angin dihitung sebagai arah datang dalam derajat
0 = (atan2(—uqg, —V19) X 180/m + 360) mod 360

Nilai 0 kemudian diklasifikasikan ke delapan sektor (N, NE, E, SE, S, SW, W, NW)
menggunakan batas 22,5° sebagai ambang antar-sektor. Untuk setiap sektor angin ditetapkan
fetch efektif (F.y (meter)) yang merepresentasikan jarak hembusan angin bebas-halangan menuju
lokasi. Nilai Feff ditentukan per sektor (berdasarkan geometri pantai setempat) dan dipetakan ke
setiap waktu t sesuai sektor 0 yang aktif. Dengan demikian, terbentuk deret F.

Tinggi gelombang signifikan harian berbasis angin, Hguving), diperkirakan menggunakan
bentuk Sverdrup—Munk—Bretschneider (SMB) untuk kondisi deep-water pada fetch-limited
growth. Parameterisasi yang digunakan adalah

Uz,

0,75
2 gF
Hg = 0,0163U% tanh |0,53
10
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dengan g = 9,81m/s%>. Rumus ini menangkap dua rezim: (i) untuk fetch kecil, Hywing) meningkat
tajam mengikuti pertumbuhan non-linier; (ii) untuk fetch besar, fungsi tanh (-) membatasi
(saturasi) pertumbuhan Hyging).

Deret Hyuming) pada resolusi asli (jam-an/sub-harian) kemudian diagregasi menjadi rerata
harian untuk memperoleh

Hs(wmd)(d) - N Z Hs(wmd)
ted

dengan d adalah tanggal dan N, jumlah rekaman pada tanggal tersebut. Inilah yang digunakan
sebagai Hyging harian dalam pelatihan dan evaluasi model LSTM.

| .

Pengumpulan Data Reanalisis ERAS: Pengumpulan Data
1. Komponen angin zonal dan meridional Satelit Altimetri
2. Tinggi gelombang signifikan

}

Pengkonversian komponen
angin zonal dan meridional ke
tinggi gelombang signifikan

v '

Data Hs (ERAS) Data Hs (angin) Data Hs (alt)
[ I l
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Gambar 2. Bagan Alir Penelitian
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2.3.2. Penormalisasian Data
Proses normalisasi data diterapkan agar nilai-nilai yang besar tidak mendominasi nilai-nilai
yang lebih kecil. Dalam penelitian ini digunakan metode normalisasi min-max dengan rentang

antara 0 hingga 1. Persamaan normalisasi min-max disajikan pada rumus berikut.

x — min (x)

N =
. (x) — min (x)

dimana :

X = Nilai data asli
min (x) = Nilai data terkecil
max (x)= Nilai data terbesar

2.4.  Pembangunan Model LSTM

Model Long Short-Term Memory (LSTM) yang digunakan dalam penelitian ini dibangun
menggunakan kerangka kerja PyTorch dengan konfigurasi arsitektur yang terdiri dari 2 hidden
layers berukuran 64 unit dan dropout sebesar 0,2. Model menerima input berupa deret waktu
tinggi gelombang signifikan (Hs) harian dengan panjang jendela (lookback) selama 60 hari dan
menghasilkan prediksi untuk 1 hari ke depan (horizon = 1).

Proses pelatihan menggunakan fungsi optimisasi Adam dengan laju pembelajaran awal
sebesar 0,001. Batch size ditetapkan sebesar 32, dan model dilatih hingga 200 epoch dengan
mekanisme learning rate scheduler (ReducelLROnPlateau) yang akan menurunkan laju
pembelajaran sebesar 50% jika validation loss tidak mengalami perbaikan dalam 5 epoch
berturut-turut. Seluruh data diubah menjadi resolusi harian melalui proses resampling dan
interpolasi, kemudian dinormalisasi menggunakan Min—Max scaler yang di-fit hanya pada data
latih untuk menghindari kebocoran data (data leakage). Dataset dibagi menjadi tiga bagian: data
latih (<£2021), data validasi (2022), dan data uji (2023). Proses pelatihan dilakukan menggunakan
data latih, sedangkan data validasi digunakan untuk memantau kinerja model selama proses
pelatihan dan mencegah overfitting.

Arsitektur LSTM yang digunakan bersifat many-to-one, di mana setiap 60 hari data historis
digunakan untuk memprediksi 1 nilai Hs pada hari berikutnya. LSTM dipilih karena
kemampuannya mengingat ketergantungan jangka panjang dalam data deret waktu dan mengatasi
masalah vanishing gradient yang sering muncul pada jaringan saraf berulang (Recurrent Neural
Network, RNN) konvensional. Dengan demikian, model ini mampu mempelajari pola musiman
maupun intramusiman pada gelombang laut yang dipengaruhi oleh fenomena atmosfer dan
oseanografi.

2.5.  Pengvalidasian Model
Untuk menilai tingkat akurasi dan kinerja model yang dikembangkan dalam memprediksi

tinggi gelombang signifikan, digunakan tiga jenis metrik evaluasi, yaitu root mean square error
(RMSE),

RMSE =

mean absolute error (MAE),
MAE AN V
= EZ lyi = 7l
i=1
serta mean absolute percentage error (MAPE)
MAE AN Vi
= EZ lyi = 7l
i=

Dimana:
Vi = Nilai sebenarnya
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Vi = Nilai prediksi
n = Jumlah sampel
3. Hasil dan Pembahasan

3.1. Prapemrosesan Data

Sebelum membangun model LSTM, komponen angin u;9 dan v;¢ dikonversi menjadi tinggi
gelombang signifikan Hgming menggunakan parameterisasi Sverdrup—Munk—Bretschneider
(SMB). Kemudian, data tersebut menjadi data masukan untuk pelatihan, validasi dan pengujian
model LSTM menggunakan dataset angin (Hgpuing))-

Selanjutnya, kedua deret tinggi gelombang signifikan Hygingy dan Hgeras) dinormalisasi
dengan min-max scaling ke rentang (0, 1) untuk menstabilkan proses pelatihan LSTM.
Normalisasi ini tidak mengubah pola temporal, hanya mengubah skala nilainya. Gambar 3
memperlihatkan data sebelum (a) dan sesudah normalisasi (b), dimana pola tetap serupa
sementara rentang nilai terpetakan ke [0,1].

151
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T T T T T T J
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Gambar 3. Data sebelum (a) dan sesudah (b) dinormalisasi
3.2.  Hasil Peramalan Tinggi Gelombang Signifikan

Setelah proses pelatihan model, tahap selanjutnya adalah melakukan prediksi tinggi
gelombang signifikan (H,) harian pada periode validasi (2022) dan uji (2023). Evaluasi dilakukan
terhadap dua jenis data masukan Hggzrss) dan Hsaimg. Pemisahan dataset dilakukan dengan
proporsi: data latih <2021, data validasi = 2022, dan data uji = 2023.

Pelatihan model LSTM pada data Hyzras) menghasilkan nilai training loss akhir sebesar
0.00185 dan validation loss sebesar 0.00115, yang menunjukkan kemampuan model dalam
mempelajari pola data pelatihan dan mempertahankannya pada data validasi dengan baik.
Evaluasi pada data uji tahun 2023 memberikan nilai Mean Absolute Error (MAE) sebesar 0.032
m dan Root Mean Square Error (RMSE) sebesar 0.048 m, dengan rata-rata Hs sebesar 0.37 m dan
standar deviasi 0.14 m.

Gambar 4 menampilkan perbandingan antara data pelatihan (hitam), data validasi tahun
2022 (oranye), data uji aktual tahun 2023 (hijau), dan hasil prediksi LSTM (biru). Hasil prediksi
LSTM menunjukkan kecenderungan yang selaras dengan tren data aktual, baik pada periode
gelombang tinggi maupun rendah. Model mampu merepresentasikan fluktuasi intramusiman dan
puncak musiman dengan cukup akurat, meskipun pada beberapa peristiwa ekstrem terdapat
kecenderungan sedikit meremehkan amplitudo puncak.
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Gambar 4. Grafik hasil peramalan Hszr4s) menggunakan LSTM
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Gambar 5. Grafik hasil peramalan Hswing menggunakan LSTM

Dengan konfigurasi hyperparameter yang sama, pelatihan model LSTM pada data Hypving
menghasilkan nilai fraining loss akhir sebesar 0.00148 dan validation loss sebesar 0.00094.
Evaluasi pada data uji tahun 2023 memberikan nilai MAE sebesar 0.034 m dan RMSE sebesar
0.052 m, dengan rata-rata Hs sebesar 0.11 m dan standar deviasi 0.10 m.

Gambar 5 menunjukkan perbandingan antara data pelatihan (hitam), data validasi tahun
2022 (oranye), data uji aktual tahun 2023 (hijau), dan hasil prediksi LSTM (biru). Prediksi yang
dihasilkan untuk Hyging) secara umum sejalan dengan pola yang tercatat pada data aktual. Namun,
pada beberapa puncak gelombang ekstrem, amplitudo hasil prediksi tampak lebih rendah
dibandingkan pengamatan. Perbedaan ini dapat disebabkan oleh sifat Hsuving) yang dihitung dari
data angin permukaan, sehingga tidak mempertimbangkan kontribusi gelombang jauh (swell)
maupun faktor oseanografi lain yang mempengaruhi kondisi gelombang di lokasi studi.

Analisis variabilitas musiman menunjukkan bahwa pola perubahan tinggi gelombang
signifikan per musim monsun dapat direpresentasikan dengan baik oleh model LSTM pada kedua
dataset. Pada dataset Hiuing), nilai rata-rata Hs tertinggi terjadi pada musim peralihan kedua
(September—November) dengan 0.1291 m (aktual) dan 0.1238 m (prediksi), sedangkan nilai
terendah terjadi pada musim barat laut (Desember—Februari) dengan 0.0790 m (aktual) dan
0.0850 m (prediksi). Pada dataset Hyzras), nilai rata-rata Hs tertinggi terjadi pada musim tenggara
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(Juni—Agustus) dengan 0.4957 m (aktual) dan 0.4962 m (prediksi), sedangkan nilai terendah
terjadi pada musim peralihan pertama (Maret—-Mei) dengan 0.3929 m (aktual) dan 0.3993 m
(prediksi).

Tabel 1. Perbandingan Rata-Rata Musiman Tinggi Gelombang Signifikan

Musim Hsoving) Aktual Hisoving) Prediksi HskEras) Aktual | Hgeras) Prediksi
(m) (m) (m) (m)
Musim Barat Laut
(Des—Feb) 0.0790 0.0850 0.4257 0.4249
Peralihan Pertama
(Mar—Mei) 0.1030 0.1032 0.3929 0.3993
Musim Tenggara (Jun— 0.0905 0.0922 02627 02671
Agu)
Peralihan Kedua (Sep— 0.1291 0.1238 03203 03176
Nov)

3.3.  Validasi Model LSTM
Perbandingan antara hasil prediksi LSTM dan pengamatan tinggi gelombang signifikan

dari satelit altimetri dilakukan untuk periode yang memiliki irisan waktu selama priode September
- Desember 2023.
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Gambar 6. Grafik Perbandingan Data Satelit Altimetri dengan Hasil Peramalan Hpving)
(a) dan Hy(zras) (b) Menggunakan LSTM
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Untuk Hjping, model menunjukkan MAE sebesar 0.434 m dan RMSE sebesar 0.460 m.
Nilai kesalahan ini relatif tinggi dibandingkan hasil validasi dengan Hkras. Secara visual,
perbedaan paling mencolok terlihat pada amplitudo puncak gelombang, di mana prediksi Hypving)
cenderung underestimate terhadap data altimetri. Salah satu penyebab utama perbedaan ini adalah
sifat Hymwing) yang hanya dihitung dari data angin permukaan, sehingga hanya merepresentasikan
gelombang lokal (wind sea) dan mengabaikan kontribusi gelombang jarak jauh (swell). Selain
itu, resolusi spasial data angin dan asumsi metode konversi ke Hs dapat menyebabkan
ketidakakuratan dalam menangkap variasi skala kecil yang mungkin terdeteksi oleh altimetri.
Faktor oseanografi seperti arus laut, topografi dasar laut, dan kondisi perairan terlokalisasi di
sekitar titik studi juga dapat menyebabkan perbedaan antara hasil prediksi dan pengamatan
altimetri.

Sebaliknya, untuk Hyzras), model menghasilkan MAE sebesar 0.235 m dan RMSE sebesar
0.282 m, yang menunjukkan kesesuaian yang lebih baik dengan data altimetri. Perbedaan yang
lebih kecil ini disebabkan oleh karakteristik Hyzr4s) sebagai data hasil reanalisis yang
menggabungkan informasi atmosfer, gelombang, dan interaksi laut-atmosfer, sehingga
representasi kondisi gelombang lebih realistis dan mendekati hasil pengamatan altimetri.

Secara umum, hasil validasi ini mengindikasikan bahwa model LSTM yang dilatih dengan
Hieras) memiliki akurasi lebih tinggi dalam mereplikasi pola gelombang aktual yang diukur oleh
altimetri dibandingkan dengan model yang dilatih menggunakan Hping. Namun, Hgping tetap
memiliki nilai praktis dalam situasi operasional ketika data reanalisis atau observasi gelombang
tidak tersedia, meskipun akurasinya lebih rendah dan cenderung menghasilkan deviasi yang lebih
besar terhadap data satelit altimetri.

Selanjutnya, performa model LSTM dievaluasi menggunakan metrik RMSE, MAE, dan
MAPE. Pengujian dilakukan pada dua dataset utama, yaitu Hysuingy dan Hyezras), dengan periode
prediksi (Length of Output) yang bervariasi: 12 bulan, 6 bulan, 3 bulan, 1 bulan, dan 1 minggu.
Evaluasi ini bertujuan untuk mengetahui pengaruh panjang jendela prediksi terhadap akurasi
model. Nilai RMSE dan MAE yang rendah menunjukkan prediksi tinggi gelombang signifikan
yang presisi, sedangkan MAPE memberikan gambaran kesalahan relatif dalam persen.

Berdasarkan hasil validasi internal, nilai RMSE dan MAE umumnya lebih kecil pada
prediksi jangka pendek (1 minggu) dibanding prediksi jangka panjang (12 bulan), baik untuk
Hspingg maupun Hgeras). MAPE untuk kedua dataset juga relatif rendah (<3%) pada semua
skenario Length of Output, yang menunjukkan bahwa model mampu memprediksi pola
gelombang dengan kesalahan relatif yang kecil.

Tabel 2. Validasi Model LSTM

Input Data | Length of Output Validation Data RMSE MAE MAPE
Hspwind) 12 bulan Hswing) prediksi 0.0065 0.0042 2.388
Hyceras) 12 bulan Hiceras) prediksi 0.0237 0.0068 1.870
Hspwind) 6 bulan Hipwina) prediksi 0.0062 0.0040 2413
HsEras) 6 bulan Hsras) prediksi 0.0311 0.0070 2.362
Hsowind) 3 bulan Hiwinag) prediksi 0.0064 0.0041 2.246
HsEras) 3 bulan Hsras) prediksi 0.0097 0.0040 1.768
Hiswind) 1 bulan Hispwina) prediksi 0.0071 0.0045 2.172
Hseeras) 1 bulan HsEras) prediksi 0.0088 0.0063 1.622
Hsgvind) 1 minggu Hswing) prediksi 0.0056 0.0033 1.826
HsEras) 1 minggu HsEras) prediksi 0.0095 0.0071 2.052
Hs_Altimetry Hswing) prediksi 0.460 0.434 78.34
Hs_Altimetry Hsras) prediksi 0.282 0.235 37.98

Validasi terhadap data altimetri memperlihatkan perbedaan performa yang cukup besar antara
kedua sumber data input. Model berbasis H,zri5) menunjukkan nilai RMSE (0.282 m), MAE
(0.235 m), dan MAPE (37.98%) yang lebih baik dibanding model berbasis Hing) dengan RMSE
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(0.460 m), MAE (0.434 m), dan MAPE (78.34%). Secara keseluruhan, penerapan model LSTM
dalam memprediksi tinggi gelombang signifikan memberikan hasil yang baik, meskipun hasilnya
dapat dipengaruhi oleh sejumlah faktor seperti kualitas data input dan asumsi yang digunakan
dalam model. Selain itu, perbandingan dengan data altimetri menunjukkan tingkat kesesuaian
yang baik, di mana model berbasis data H,zr45) memberikan tingkat akurasi tertinggi.

4. Kesimpulan

Berdasarkan hasil penelitian mengenai implementasi metode Long Short-Term Memory
(LSTM) dalam peramalan tinggi gelombang signifikan di wilayah perairan Kabupaten Bolaang
Mongondow Utara menggunakan dua sumber data (Hsming dan Hgeras), diperoleh beberapa
kesimpulan sebagai berikut:

1. Penerapan metode LSTM dalam peramalan tinggi gelombang laut di perairan Bolaang
Mongondow Utara berhasil dilakukan dengan baik. Model dibangun menggunakan data
historis Hgmwingg dan Hgezras), serta menghasilkan prediksi jangka pendek hingga jangka
menengah dengan performa stabil, ditandai dengan nilai RMSE dan MAE yang rendah serta
MAPE < 3% pada semua skenario, dengan akurasi tertinggi pada prediksi jangka pendek (1
minggu), baik untuk Hyping (RMSE = 0.0056 m; MAPE = 1.826%) maupun Hzras) (RMSE
=0.0095 m; MAPE = 2.052%). Nilai error yang rendah menunjukkan bahwa LSTM mampu
mempelajari pola temporal gelombang laut secara efektif.

2. Hasil validasi terhadap data observasi satelit altimetri memperlihatkan bahwa model berbasis
Hg(zras) memiliki akurasi lebih tinggi dibanding Hgpving, dengan nilai RMSE = 0.282 m, MAE
=0.235 m, dan MAPE = 37.98%. Sementara itu, model berbasis H,uing) menghasilkan RMSE
= 0.460 m, MAE = 0.434 m, dan MAPE = 78.34%. Hal ini menunjukkan bahwa integrasi
parameter atmosfer dan oseanografi dalam Hyrss) membuat prediksi LSTM lebih konsisten
dengan hasil observasi.

3. Model LSTM mampu merepresentasikan dinamika gelombang laut, termasuk variabilitas
musiman. Hasil prediksi menunjukkan pola musiman yang sesuai dengan data aktual, seperti
puncak gelombang pada musim peralihan kedua (Hyping) dan musim barat laut (Hyzras)). Hal
ini menegaskan bahwa LSTM efektif dalam menggambarkan perubahan temporal gelombang
laut berdasarkan data historis maupun validasi satelit altimetri.
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