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Abstrak 

Gelombang laut merupakan fenomena alam yang dibangkitkan oleh angin dan memiliki peran penting 

dalam rekayasa pantai, perikanan, serta transportasi maritim. Informasi tinggi gelombang sangat 

diperlukan, namun sifat stokastik gelombang laut membuat prediksinya masih menjadi tantangan. 

Penelitian ini bertujuan mengembangkan model prakiraan tinggi gelombang signifikan menggunakan 

algoritma Long Short-Term Memory (LSTM) di perairan Kabupaten Bolaang Mongondow Utara, Sulawesi 

Utara. Dataset yang digunakan berasal dari ERA5 berupa tinggi gelombang signifikan (Hs(ERA5)), komponen 

angin zonal-meridional yang dikonversi menjadi Hs(wind), serta data altimetri untuk validasi. Model LSTM 

dilatih pada data 1998–2021, divalidasi 2022, dan diuji 2023 dengan horizon prediksi 1 hari. Hasil 

menunjukkan bahwa model mampu memprediksi tinggi gelombang signifikan dengan baik. Evaluasi 

menggunakan data uji menghasilkan nilai kesalahan rendah, dengan RMSE dan MAE pada kisaran 

sentimeter. Validasi terhadap data altimetri memperlihatkan kinerja lebih baik pada Hs(ERA5) (RMSE 0,282 

m; MAE 0,235 m; MAPE 37,98%) dibanding Hs(wind) (RMSE 0,460 m; MAE 0,434 m; MAPE 78,34%). 

Model juga berhasil merepresentasikan variabilitas musiman sesuai pola aktual. Hasil ini menunjukkan 

bahwa metode LSTM efektif untuk peramalan tinggi gelombang signifikan dan berpotensi mendukung 

sistem peringatan dini serta perencanaan wilayah pesisir di Indonesia. 

 
Kata kunci: deep learning, LSTM, peramalan gelombang, ERA5, altimetri 
 

1. Pendahuluan 

1.1. Latar belakang 

Kemampuan untuk memprediksi tinggi gelombang laut secara akurat sangat penting dalam 

pengelolaan wilayah pesisir dan peringatan dini bencana maritim. Metode prediksi tradisional 

seperti Darbyshire dan SMB (Sverdrup-Munk-Bretscheider) menggunakan pendekatan empiris 

berbasis rumus yang mempertimbangkan kecepatan angin, durasi, dan fetch untuk 

memperkirakan tinggi gelombang. Namun, metode ini memiliki keterbatasan dalam menangani 

data deret waktu yang kompleks, non-linier, serta kurang mampu menangkap dinamika sistem 

laut yang berubah secara spasial dan temporal. 

Di sisi lain, kemajuan teknologi kecerdasan buatan telah memungkinkan pengembangan 

model prediksi yang lebih akurat dan adaptif. Salah satu pendekatan yang menjanjikan adalah 

Long Short-Term Memory (LSTM), yang merupakan varian dari Recurrent Neural Network 

(RNN). LSTM dirancang untuk mengingat hubungan jangka panjang dalam data deret waktu dan 

terbukti efektif untuk memodelkan sistem kompleks yang bergantung pada data historis, termasuk 

dalam bidang oseanografi dan atmosfer  

Berdasarkan hal tersebut, penelitian ini bertujuan untuk menerapkan metode LSTM dalam 

peramalan tinggi gelombang laut dan membandingkan hasil prediksinya dengan data observasi 

dari satelit altimetri sebagai validasi. 
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1.2. Rumusan Masalah 

1. Bagaimana implementasi metode Long Short-Term Memory (LSTM) dalam peramalan tinggi 

gelombang laut di wilayah perairan Bolaang Mongondow Utara? 

2. Bagaimana tingkat akurasi hasil prediksi tinggi gelombang laut yang dihasilkan oleh model 

LSTM jika dibandingkan dengan data observasi altimetri? 

3. Sejauh mana model LSTM mampu merepresentasikan dinamika tinggi gelombang laut 

berdasarkan data historis dan data observasi satelit? 

1.3. Batasan Penelitian  

1. Data yang digunakan terbatas pada (i) reanalisis ERA5 SWH (swh), (ii) komponen angin u/v 

ERA5 untuk membentuk Hs(wind), dan (iii) observasi satelit altimetri sebagai pembanding. 

2. Penelitian difokuskan pada wilayah perairan Bolaang Mongondow Utara, Provinsi Sulawesi 

Utara. 

3. Model LSTM yang dikembangkan hanya digunakan untuk prediksi tinggi gelombang dan 

tidak mencakup parameter oseanografi lainnya. 

4. Validasi dilakukan hanya menggunakan data altimetri yang tersedia selama periode tertentu. 

1.4. Tujuan Penelitian 

1. Menerapkan metode Long Short-Term Memory (LSTM) untuk melakukan prediksi tinggi 

gelombang laut di wilayah perairan Bolaang Mongondow Utara. 

2. Melakukan validasi hasil prediksi tinggi gelombang menggunakan data observasi satelit 

altimetri. 

3. Menganalisis performa model LSTM dalam merepresentasikan kondisi aktual gelombang laut 

berdasarkan data historis dan data observasi. 

1.5. Manfaat Penelitian 

1. Memberikan alternatif metode prediksi tinggi gelombang laut berbasis kecerdasan buatan. 

2. Mendukung sistem peringatan dini dan perencanaan wilayah pesisir. 

3. Menyediakan informasi akurat bagi pelayaran dan kegiatan kelautan lainnya. 

1.6. Lokasi Penelitian 

Penelitian ini dilakukan di wilayah perairan Bolaang Mongondow Utara, Provinsi Sulawesi 

Utara, Indonesia. Wilayah ini memiliki karakteristik kelautan yang dinamis dan relevan untuk 

kajian prediksi gelombang laut karena berada di kawasan yang rawan terhadap gelombang tinggi 

dan memiliki aktivitas perikanan serta pelayaran yang cukup tinggi. Koordinat umum wilayah 

penelitian berkisar antara 0,5° hingga 1,5° LU dan 123° hingga 124° BT. 

2. Metode Penelitian  

2.1. Lokasi Penelitian dan Pengumpulan Data 

Wilayah penelitian berlokasi di perairan pesisir Bolaang Mongondow Utara, Provinsi 

Sulawesi Utara, Indonesia, dengan titik pusat penelitian pada koordinat sekitar 0.8978° LU dan 

123.4590° BT. Lokasi ini mencakup pesisir Kecamatan Bintauna dan sekitarnya, yang 

menghadap langsung ke Laut Sulawesi. 

Untuk keperluan prediksi tinggi gelombang signifikan, digunakan data komponen angin 

zonal (u10) dan meridional (v10), serta data tinggi gelombang signifikan (swh) dengan grid 0,5° 

selama 1998–2023 yang bersumber dari reanalisis ERA5 ECMWF. Nilai pada koordinat studi 

(0,8978° LU, 123,4590° BT) diperoleh melalui interpolasi bilinear ke titik tersebut, kemudian 

diagregasi menjadi rerata harian. Sebagai data pembanding, digunakan data tinggi gelombang 

signifikan dari satelit altimetri yang diperoleh dari CMEMS, produk Level-3 SWH (variabel 

VAVH) untuk periode September–Desember 2023. 
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Gambar 1. Lokasi Penelitian  
(Sumber: QGIS 3.40 dan Google Earth Pro) 

2.2. Bagan Alir  

Metode penelitian pada Tugas Akhir ini disusun ke dalam suatu bagan alir. Bagan alir 

tersebut dapat dilihat pada Gambar 2. 

2.3. Pra-pemrosesan Data 

2.3.1. Pengkonversian Komponen u10 dan v10 

Pembentukan tinggi gelombang signifikan (Hs) dari angin (Hs(wind)) menggunakan 

komponen angin 10 m ERA5 (u10, v10), Kecepatan angin (U10) dihitung sebagai:  

𝑈10 = √𝑢10
2 + 𝑣10

2  

Arah angin dihitung sebagai arah datang dalam derajat 

𝜃 = (𝑎𝑡𝑎𝑛2(−𝑢10, −𝑣10) × 180/𝜋 + 360) 𝑚𝑜𝑑 360 

Nilai θ kemudian diklasifikasikan ke delapan sektor (N, NE, E, SE, S, SW, W, NW) 

menggunakan batas 22,5° sebagai ambang antar-sektor. Untuk setiap sektor angin ditetapkan 

fetch efektif (Feff (meter)) yang merepresentasikan jarak hembusan angin bebas-halangan menuju 

lokasi. Nilai Feff ditentukan per sektor (berdasarkan geometri pantai setempat) dan dipetakan ke 

setiap waktu t sesuai sektor θ yang aktif. Dengan demikian, terbentuk deret F. 

Tinggi gelombang signifikan harian berbasis angin, Hs(wind), diperkirakan menggunakan 

bentuk Sverdrup–Munk–Bretschneider (SMB) untuk kondisi deep-water pada fetch-limited 

growth. Parameterisasi yang digunakan adalah 

𝐻𝑠 = 0,0163𝑈10
2 𝑡𝑎𝑛ℎ [0,53 (

𝑔𝐹

𝑈10
2 )

0,75

] 
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dengan g = 9,81m/s2. Rumus ini menangkap dua rezim: (i) untuk fetch kecil, Hs(wind) meningkat 

tajam mengikuti pertumbuhan non-linier; (ii) untuk fetch besar, fungsi tanh (⋅) membatasi 

(saturasi) pertumbuhan Hs(wind). 

Deret Hs(wind) pada resolusi asli (jam-an/sub-harian) kemudian diagregasi menjadi rerata 

harian untuk memperoleh 

𝐻̅𝑠(𝑤𝑖𝑛𝑑)(𝑑) =
1

𝑁𝑑
∑ 𝐻𝑠(𝑤𝑖𝑛𝑑)

𝑡∈𝑑

 

 

dengan d adalah tanggal dan Nd jumlah rekaman pada tanggal tersebut. Inilah yang digunakan 

sebagai Hs(wind) harian dalam pelatihan dan evaluasi model LSTM. 

 

 
 

Gambar 2. Bagan Alir Penelitian 

 

 

 

 

   
Pengumpulan Data Reanalisis ERA5: 

1. Komponen angin zonal dan meridional 

2. Tinggi gelombang signifikan 
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2.3.2. Penormalisasian Data 

Proses normalisasi data diterapkan agar nilai-nilai yang besar tidak mendominasi nilai-nilai 

yang lebih kecil. Dalam penelitian ini digunakan metode normalisasi min-max dengan rentang 

antara 0 hingga 1. Persamaan normalisasi min-max disajikan pada rumus berikut. 

𝑁𝑜𝑟𝑚 =  
𝑥 −  𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥 (𝑥)  −  𝑚𝑖𝑛 (𝑥)
 

dimana : 

x  =  Nilai data asli 

min (x) =  Nilai data terkecil 

max (x) =  Nilai data terbesar  

2.4. Pembangunan Model LSTM 

Model Long Short-Term Memory (LSTM) yang digunakan dalam penelitian ini dibangun 

menggunakan kerangka kerja PyTorch dengan konfigurasi arsitektur yang terdiri dari 2 hidden 

layers berukuran 64 unit dan dropout sebesar 0,2. Model menerima input berupa deret waktu 

tinggi gelombang signifikan (Hs) harian dengan panjang jendela (lookback) selama 60 hari dan 

menghasilkan prediksi untuk 1 hari ke depan (horizon = 1). 

Proses pelatihan menggunakan fungsi optimisasi Adam dengan laju pembelajaran awal 

sebesar 0,001. Batch size ditetapkan sebesar 32, dan model dilatih hingga 200 epoch dengan 

mekanisme learning rate scheduler (ReduceLROnPlateau) yang akan menurunkan laju 

pembelajaran sebesar 50% jika validation loss tidak mengalami perbaikan dalam 5 epoch 

berturut-turut. Seluruh data diubah menjadi resolusi harian melalui proses resampling dan 

interpolasi, kemudian dinormalisasi menggunakan Min–Max scaler yang di-fit hanya pada data 

latih untuk menghindari kebocoran data (data leakage). Dataset dibagi menjadi tiga bagian: data 

latih (≤ 2021), data validasi (2022), dan data uji (2023). Proses pelatihan dilakukan menggunakan 

data latih, sedangkan data validasi digunakan untuk memantau kinerja model selama proses 

pelatihan dan mencegah overfitting.  

Arsitektur LSTM yang digunakan bersifat many-to-one, di mana setiap 60 hari data historis 

digunakan untuk memprediksi 1 nilai Hs pada hari berikutnya. LSTM dipilih karena 

kemampuannya mengingat ketergantungan jangka panjang dalam data deret waktu dan mengatasi 

masalah vanishing gradient yang sering muncul pada jaringan saraf berulang (Recurrent Neural 

Network, RNN) konvensional. Dengan demikian, model ini mampu mempelajari pola musiman 

maupun intramusiman pada gelombang laut yang dipengaruhi oleh fenomena atmosfer dan 

oseanografi. 

2.5. Pengvalidasian Model 

Untuk menilai tingkat akurasi dan kinerja model yang dikembangkan dalam memprediksi 

tinggi gelombang signifikan, digunakan tiga jenis metrik evaluasi, yaitu root mean square error 

(RMSE), 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

mean absolute error (MAE), 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

serta mean absolute percentage error (MAPE) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

Dimana: 

yi  = Nilai sebenarnya 
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ŷi  = Nilai prediksi 

n  = Jumlah sampel 

3. Hasil dan Pembahasan  

3.1. Prapemrosesan Data 

Sebelum membangun model LSTM, komponen angin u10 dan v10 dikonversi menjadi tinggi 

gelombang signifikan Hs(wind) menggunakan parameterisasi Sverdrup–Munk–Bretschneider 

(SMB). Kemudian, data tersebut menjadi data masukan untuk pelatihan, validasi dan pengujian 

model LSTM menggunakan dataset angin (Hs(wind)). 

Selanjutnya, kedua deret tinggi gelombang signifikan Hs(wind) dan Hs(ERA5) dinormalisasi 

dengan min-max scaling ke rentang (0, 1) untuk menstabilkan proses pelatihan LSTM. 

Normalisasi ini tidak mengubah pola temporal, hanya mengubah skala nilainya. Gambar 3 

memperlihatkan data sebelum (a) dan sesudah normalisasi (b), dimana pola tetap serupa 

sementara rentang nilai terpetakan ke [0,1].  

 

(a) 

 

(b) 

Gambar 3. Data sebelum (a) dan sesudah (b) dinormalisasi 

3.2. Hasil Peramalan Tinggi Gelombang Signifikan 

 Setelah proses pelatihan model, tahap selanjutnya adalah melakukan prediksi tinggi 

gelombang signifikan (Hs) harian pada periode validasi (2022) dan uji (2023). Evaluasi dilakukan 

terhadap dua jenis data masukan Hs(ERA5) dan Hs(wind). Pemisahan dataset dilakukan dengan 

proporsi: data latih ≤ 2021, data validasi = 2022, dan data uji = 2023. 

 Pelatihan model LSTM pada data Hs(ERA5) menghasilkan nilai training loss akhir sebesar 

0.00185 dan validation loss sebesar 0.00115, yang menunjukkan kemampuan model dalam 

mempelajari pola data pelatihan dan mempertahankannya pada data validasi dengan baik. 

Evaluasi pada data uji tahun 2023 memberikan nilai Mean Absolute Error (MAE) sebesar 0.032 

m dan Root Mean Square Error (RMSE) sebesar 0.048 m, dengan rata-rata Hs sebesar 0.37 m dan 

standar deviasi 0.14 m.  

Gambar 4 menampilkan perbandingan antara data pelatihan (hitam), data validasi tahun 

2022 (oranye), data uji aktual tahun 2023 (hijau), dan hasil prediksi LSTM (biru). Hasil prediksi 

LSTM menunjukkan kecenderungan yang selaras dengan tren data aktual, baik pada periode 

gelombang tinggi maupun rendah. Model mampu merepresentasikan fluktuasi intramusiman dan 

puncak musiman dengan cukup akurat, meskipun pada beberapa peristiwa ekstrem terdapat 

kecenderungan sedikit meremehkan amplitudo puncak. 
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Gambar 4. Grafik hasil peramalan Hs(ERA5) menggunakan LSTM 

   

 

Gambar 5. Grafik hasil peramalan Hs(wind) menggunakan LSTM 

  

Dengan konfigurasi hyperparameter yang sama, pelatihan model LSTM pada data Hs(wind) 

menghasilkan nilai training loss akhir sebesar 0.00148 dan validation loss sebesar 0.00094. 

Evaluasi pada data uji tahun 2023 memberikan nilai MAE sebesar 0.034 m dan RMSE sebesar 

0.052 m, dengan rata-rata Hs sebesar 0.11 m dan standar deviasi 0.10 m.  

 Gambar 5 menunjukkan perbandingan antara data pelatihan (hitam), data validasi tahun 

2022 (oranye), data uji aktual tahun 2023 (hijau), dan hasil prediksi LSTM (biru). Prediksi yang 

dihasilkan untuk Hs(wind) secara umum sejalan dengan pola yang tercatat pada data aktual. Namun, 

pada beberapa puncak gelombang ekstrem, amplitudo hasil prediksi tampak lebih rendah 

dibandingkan pengamatan. Perbedaan ini dapat disebabkan oleh sifat Hs(wind) yang dihitung dari 

data angin permukaan, sehingga tidak mempertimbangkan kontribusi gelombang jauh (swell) 

maupun faktor oseanografi lain yang mempengaruhi kondisi gelombang di lokasi studi.  

Analisis variabilitas musiman menunjukkan bahwa pola perubahan tinggi gelombang 

signifikan per musim monsun dapat direpresentasikan dengan baik oleh model LSTM pada kedua 

dataset. Pada dataset Hs(wind), nilai rata-rata Hs tertinggi terjadi pada musim peralihan kedua 

(September–November) dengan 0.1291 m (aktual) dan 0.1238 m (prediksi), sedangkan nilai 

terendah terjadi pada musim barat laut (Desember–Februari) dengan 0.0790 m (aktual) dan 

0.0850 m (prediksi). Pada dataset Hs(ERA5), nilai rata-rata Hs tertinggi terjadi pada musim tenggara 
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(Juni–Agustus) dengan 0.4957 m (aktual) dan 0.4962 m (prediksi), sedangkan nilai terendah 

terjadi pada musim peralihan pertama (Maret–Mei) dengan 0.3929 m (aktual) dan 0.3993 m 

(prediksi). 

Tabel 1. Perbandingan Rata-Rata Musiman Tinggi Gelombang Signifikan 

Musim 
Hs(wind) Aktual 

(m) 

Hs(wind) Prediksi 

(m) 

Hs(ERA5) Aktual 

(m) 

Hs(ERA5) Prediksi 

(m) 

Musim Barat Laut 

(Des–Feb) 
0.0790 0.0850 0.4257 0.4249 

Peralihan Pertama 

(Mar–Mei) 
0.1030 0.1032 0.3929 0.3993 

Musim Tenggara (Jun–

Agu) 
0.0905 0.0922 0.2627 0.2671 

Peralihan Kedua (Sep–

Nov) 
0.1291 0.1238 0.3203 0.3176 

3.3. Validasi Model LSTM 

 Perbandingan antara hasil prediksi LSTM dan pengamatan tinggi gelombang signifikan 

dari satelit altimetri dilakukan untuk periode yang memiliki irisan waktu selama priode September 

- Desember 2023. 

 

(a) 

 

(b) 

Gambar 6. Grafik Perbandingan Data Satelit Altimetri dengan Hasil Peramalan Hs(wind)  
(a) dan Hs(ERA5) (b) Menggunakan LSTM 
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 Untuk Hs(wind), model menunjukkan MAE sebesar 0.434 m dan RMSE sebesar 0.460 m. 

Nilai kesalahan ini relatif tinggi dibandingkan hasil validasi dengan Hs(ERA5). Secara visual, 

perbedaan paling mencolok terlihat pada amplitudo puncak gelombang, di mana prediksi Hs(wind) 

cenderung underestimate terhadap data altimetri. Salah satu penyebab utama perbedaan ini adalah 

sifat Hs(wind) yang hanya dihitung dari data angin permukaan, sehingga hanya merepresentasikan 

gelombang lokal (wind sea) dan mengabaikan kontribusi gelombang jarak jauh (swell). Selain 

itu, resolusi spasial data angin dan asumsi metode konversi ke Hs dapat menyebabkan 

ketidakakuratan dalam menangkap variasi skala kecil yang mungkin terdeteksi oleh altimetri. 

Faktor oseanografi seperti arus laut, topografi dasar laut, dan kondisi perairan terlokalisasi di 

sekitar titik studi juga dapat menyebabkan perbedaan antara hasil prediksi dan pengamatan 

altimetri. 

 Sebaliknya, untuk Hs(ERA5), model menghasilkan MAE sebesar 0.235 m dan RMSE sebesar 

0.282 m, yang menunjukkan kesesuaian yang lebih baik dengan data altimetri. Perbedaan yang 

lebih kecil ini disebabkan oleh karakteristik Hs(ERA5) sebagai data hasil reanalisis yang 

menggabungkan informasi atmosfer, gelombang, dan interaksi laut–atmosfer, sehingga 

representasi kondisi gelombang lebih realistis dan mendekati hasil pengamatan altimetri. 

 Secara umum, hasil validasi ini mengindikasikan bahwa model LSTM yang dilatih dengan 

Hs(ERA5) memiliki akurasi lebih tinggi dalam mereplikasi pola gelombang aktual yang diukur oleh 

altimetri dibandingkan dengan model yang dilatih menggunakan Hs(wind). Namun, Hs(wind) tetap 

memiliki nilai praktis dalam situasi operasional ketika data reanalisis atau observasi gelombang 

tidak tersedia, meskipun akurasinya lebih rendah dan cenderung menghasilkan deviasi yang lebih 

besar terhadap data satelit altimetri. 

 Selanjutnya, performa model LSTM dievaluasi menggunakan metrik RMSE, MAE, dan 

MAPE. Pengujian dilakukan pada dua dataset utama, yaitu Hs(wind) dan Hs(ERA5), dengan periode 

prediksi (Length of Output) yang bervariasi: 12 bulan, 6 bulan, 3 bulan, 1 bulan, dan 1 minggu. 

Evaluasi ini bertujuan untuk mengetahui pengaruh panjang jendela prediksi terhadap akurasi 

model. Nilai RMSE dan MAE yang rendah menunjukkan prediksi tinggi gelombang signifikan 

yang presisi, sedangkan MAPE memberikan gambaran kesalahan relatif dalam persen. 

 Berdasarkan hasil validasi internal, nilai RMSE dan MAE umumnya lebih kecil pada 

prediksi jangka pendek (1 minggu) dibanding prediksi jangka panjang (12 bulan), baik untuk 

Hs(wind) maupun Hs(ERA5). MAPE untuk kedua dataset juga relatif rendah (<3%) pada semua 

skenario Length of Output, yang menunjukkan bahwa model mampu memprediksi pola 

gelombang dengan kesalahan relatif yang kecil. 

 
Tabel 2. Validasi Model LSTM 

  

Validasi terhadap data altimetri memperlihatkan perbedaan performa yang cukup besar antara 

kedua sumber data input. Model berbasis Hs(ERA5) menunjukkan nilai RMSE (0.282 m), MAE 

(0.235 m), dan MAPE (37.98%) yang lebih baik dibanding model berbasis Hs(wind) dengan RMSE 

Input Data Length of Output Validation Data RMSE MAE MAPE 

Hs(wind) 12 bulan Hs(wind) prediksi 0.0065 0.0042 2.388 

Hs(ERA5) 12 bulan Hs(ERA5)  prediksi 0.0237 0.0068 1.870 

Hs(wind) 6 bulan Hs(wind) prediksi 0.0062 0.0040 2.413 

Hs(ERA5) 6 bulan Hs(ERA5)  prediksi 0.0311 0.0070 2.362 

Hs(wind) 3 bulan Hs(wind) prediksi 0.0064 0.0041 2.246 

Hs(ERA5) 3 bulan Hs(ERA5)  prediksi 0.0097 0.0040 1.768 

Hs(wind) 1 bulan Hs(wind) prediksi 0.0071 0.0045 2.172 

Hs(ERA5) 1 bulan Hs(ERA5)  prediksi 0.0088 0.0063 1.622 

Hs(wind) 1 minggu Hs(wind) prediksi 0.0056 0.0033 1.826 

Hs(ERA5) 1 minggu Hs(ERA5)  prediksi 0.0095 0.0071 2.052 

Hs_Altimetry  Hs(wind) prediksi 0.460 0.434 78.34 

Hs_Altimetry  Hs(ERA5)  prediksi 0.282 0.235 37.98 



2150 Budiman, Thambas, Supit / TEKNO  

TEKNO (Vol. 23, No. 94, Tahun 2025) 

(0.460 m), MAE (0.434 m), dan MAPE (78.34%). Secara keseluruhan, penerapan model LSTM 

dalam memprediksi tinggi gelombang signifikan memberikan hasil yang baik, meskipun hasilnya 

dapat dipengaruhi oleh sejumlah faktor seperti kualitas data input dan asumsi yang digunakan 

dalam model. Selain itu, perbandingan dengan data altimetri menunjukkan tingkat kesesuaian 

yang baik, di mana model berbasis data Hs(ERA5) memberikan tingkat akurasi tertinggi. 

4. Kesimpulan  

 Berdasarkan hasil penelitian mengenai implementasi metode Long Short-Term Memory 

(LSTM) dalam peramalan tinggi gelombang signifikan di wilayah perairan Kabupaten Bolaang 

Mongondow Utara menggunakan dua sumber data (Hs(wind) dan Hs(ERA5)), diperoleh beberapa 

kesimpulan sebagai berikut: 

1. Penerapan metode LSTM dalam peramalan tinggi gelombang laut di perairan Bolaang 

Mongondow Utara berhasil dilakukan dengan baik. Model dibangun menggunakan data 

historis Hs(wind) dan Hs(ERA5), serta menghasilkan prediksi jangka pendek hingga jangka 

menengah dengan performa stabil, ditandai dengan nilai RMSE dan MAE yang rendah serta 

MAPE < 3% pada semua skenario, dengan akurasi tertinggi pada prediksi jangka pendek (1 

minggu), baik untuk Hs(wind) (RMSE = 0.0056 m; MAPE = 1.826%) maupun Hs(ERA5) (RMSE 

= 0.0095 m; MAPE = 2.052%). Nilai error yang rendah menunjukkan bahwa LSTM mampu 

mempelajari pola temporal gelombang laut secara efektif. 

2. Hasil validasi terhadap data observasi satelit altimetri memperlihatkan bahwa model berbasis 

Hs(ERA5) memiliki akurasi lebih tinggi dibanding Hs(wind), dengan nilai RMSE = 0.282 m, MAE 

= 0.235 m, dan MAPE = 37.98%. Sementara itu, model berbasis Hs(wind) menghasilkan RMSE 

= 0.460 m, MAE = 0.434 m, dan MAPE = 78.34%. Hal ini menunjukkan bahwa integrasi 

parameter atmosfer dan oseanografi dalam Hs(ERA5) membuat prediksi LSTM lebih konsisten 

dengan hasil observasi. 

3. Model LSTM mampu merepresentasikan dinamika gelombang laut, termasuk variabilitas 

musiman. Hasil prediksi menunjukkan pola musiman yang sesuai dengan data aktual, seperti 

puncak gelombang pada musim peralihan kedua (Hs(wind)) dan musim barat laut (Hs(ERA5)). Hal 

ini menegaskan bahwa LSTM efektif dalam menggambarkan perubahan temporal gelombang 

laut berdasarkan data historis maupun validasi satelit altimetri. 
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