ANALISIS SENTIMEN MASYARAKAT TERHADAP PENGGUNAAN VAKSIN COVID-19 DI INDONESIA MENGGUNAKAN METODE NAÏVE BAYES

Authors

Keywords:

COVID-19, vaccination, sentiment analysis, Naïve Bayes

Abstract

COVID-19 was officially declared a global pandemic by WHO on March 11, 2020. In Indonesia, cases of COVID-19 were first detected on March 2, 2020 and there were more and more positive confirmations every day. The government's strategy in fighting this pandemic is by carrying out vaccinations. The use of vaccination has received various responses from the public, both those who support it and those who oppose it. This study aims to analyze public opinion on vaccination, thereby helping the public to see whether vaccines are well received or not. The data used are 600 tweets for three keywords, namely "astra", "sinopharm", and "sinovac", with 200 tweets for each keyword. Each data is divided into 70% training data and 30% testing data. Classification is done using the Naïve Bayes method. Sentiment results with the keyword "astra" show 159 tweets giving neutral sentiment, 19 tweets giving positive sentiment, and 22 tweets giving negative sentiment, with an accuracy of 68,66%. The keyword "sinovac" shows 134 tweets giving neutral sentiment, 13 tweets giving positive sentiment, and 23 tweets giving negative sentiment, with an accuracy of 82,86%. The keyword "sinopharm" shows 77 tweets giving neutral sentiment, 22 tweets giving positive sentiment, and six tweets giving negative sentiment, with an accuracy of 28,77%. It can be concluded that the results of public sentiment towards vaccination received good support from the community.

References

F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Health Information Management Journal, vol. 8, no. 2, pp. 100–109, 2020.

A. L. Fairuz, R. D. Ramadhani, and N. A. Tanjung, “Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial,” Jurnal DINDA, vol. 1, no. 1, pp. 10–12, 2021.

B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.

P. D. Stephanie, S. Enjelina, M. F. Angelica, and I. Martinelli, “Aspek Hukum Pelaksanaan Vaksinasi Covid-19 Di Indonesia,” Prosiding Senapenmas, pp. 1263–1270, 2021.

L. Rahmadani, “Distribusi dan Situasi Vaksinasi COVID-19,” Medical Profession Journal of Lampung, vol. 13, no. 2, pp. 7–13, 2023.

H. Irsyad, A. Farisi, and M. R. Pribadi, “Klasifikasi Opini Masyarakat Terhadap Jasa ISP MyRepublic dengan Naïve Bayes,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 8, no. 1, p. 30, 2019, doi: 10.22146/jnteti.v8i1.487.

L. Setiyani, M. Wahidin, D. Awaludin, and S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes: Systematic Review,” Faktor Exacta, vol. 13, no. 1, pp. 35–43, 2020.

F. Septianingrum and A. S. Y. Irawan, “Metode Seleksi Fitur Untuk Klasifikasi Sentimen Menggunakan Algoritma Naive Bayes: Sebuah Literature Review,” Jurnal Media Informatika Budidarma, vol. 5, no. 3, pp. 799–805, 2021.

M. Lutfi, S. Surorejo, and P. Septiana, “SYSTEMATIC LITERATURE REVIEW: PENERAPAN ALGORITMA NAIVES BAYES DALAM SISTEM PAKAR,” Jurnal Minfo Polgan, vol. 11, no. 2, pp. 7–13, 2022.

S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,” Jurnal Media Informatika Budidarma, vol. 4, no. 3, p. 552, 2020, doi: 10.30865/mib.v4i3.2140.

S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, 2021, doi: 10.30865/mib.v5i1.2580.

R. Y. Yanis, “Analisis Sentimen terhadap Debat Pemilihan Gubernur Jakarta Tahun 2017,” Aiti, vol. 15, no. 2, pp. 128–134, 2018, doi: 10.24246/aiti.v15i2.128-134.

D. G. Rita apriani, “Analisis Sentimen Dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,” Jurnal Rekayasa Teknologi Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019.

E. Alfonsius and M. Rifai, “PERANCANGAN SISTEM INFORMASI PENJUALAN BARANG BERBASIS VENDOR MANAGED INVENTORY (VMI),” PROSIDING SEMANTIK, vol. 1, no. 2, p. 253, 2015.

B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.

S. Hikmawan, A. Pardamean, and S. N. Khasanah, “Sentimen Analisis Publik Terhadap Joko Widodo terhadap wabah Covid-19 menggunakan Metode Machine Learning,” Jurnal Kajian Ilmiah, vol. 20, no. 2, pp. 167–176, 2020, doi: 10.31599/jki.v20i2.117.

M. I. Arief and R. Kurniawan, “Pengembangan Sistem Aplikasi Web Scraper Harga Komoditas Menggunakan Metode Design Oriented Research,” Jambura Journal of Informatics, vol. 2, no. 1, 2020, doi: 10.37905/jji.v2i1.4474.

artikel 1

Published

2023-05-15

How to Cite

Putri, L. M., & Nataliani, Y. (2023). ANALISIS SENTIMEN MASYARAKAT TERHADAP PENGGUNAAN VAKSIN COVID-19 DI INDONESIA MENGGUNAKAN METODE NAÏVE BAYES. Indonesian Journal of Intelligence Data Science, 2(1), 1–14. Retrieved from https://ejournal.unsrat.ac.id/v3/index.php/IJIDS/article/view/48609