DISEASE DETECTION SYSTEM USING CONVOLUTIONAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE CLASSIFICATION ALGORITHM WITH CHEST X-RAY IMAGE
DOI:
https://doi.org/10.35799/ijids.v1i1.49590Keywords:
Pneumonia, Convolutional Neural Network, Support Vector Machine, ClassifacationAbstract
The lungs are one of the important organs for breathing in humans. The lungs are one of the organs of the respiratory system which functions as a place for the exchange of carbon dioxide and oxygen in the blood. One of the diseases that is classified as dangerous is Pneumonia, which is an inflammation of the lungs caused by an infection which is also commonly known as wet lung. x-ray with digital image processing technology combined with the SVM method. The data used is a collection of chest x-ray images of lungs affected by pneumonia and normal lungs which are then divided into 80% training data and 20% testing data. The classification of chest x-ray images of normal lungs and those with pneumonia consists of several stages such as the data collection stage, the design stage, the training and testing stage and the analysis and performance calculation stage. This study obtained CNN accuracy results of 94% and SVM accuracy results of 89%.
References
F. Syafria, A. Buono, and B. P. Silalahi, “Pengenalan Suara Paru-Paru dengan MFCC sebagai Ekstraksi Ciri dan Backpropagation sebagai Classifier,” Jurnal Ilmu Komputer dan AgroInformatika, vol. 3, no. 1, p. 245973, 2014.
J. Suryo, Herbal Penyembuh Gangguan Sistem Pernapasan: Pneumonia–Kanker Paru-Paru-TB-Bronkitis-Pleurisi. Bentang Pustaka, 2010.
N. Frida, Penyakit Paru-Paru dan Pernapasan. Alprin, 2020.
R. M. Diar, R. Y. N. Fu’Adah, and K. Usman, “Klasifikasi Penyakit Paru-Paru Berbasis Pengolahan Citra X Ray Menggunakan Convolutional Neural Network (Classification Of The Lung Diseases Based On X Ray Image Processing Using Convolutional Neural Network),” eProceedings of Engineering, vol. 9, no. 2, 2022.
D. N. Yuzar, “Penyakit menular dan wabah penyakit covid-19,” 2020.
I. Junaidi, Stroke, waspadai ancamannya. Penerbit Andi, 2011.
R. Y. Astuti and D. Ertiana, Anemia dalam kehamilan. Pustaka Abadi, 2018.
S. Susanti, “Pemetaan Penyakit Pneumonia di Provinsi Jawa Timur,” Jurnal Biometrika dan Kependudukan, vol. 5, no. 2, pp. 117–124, 2016.
M. Ramadhan, D. I. Mulyana, and M. B. Yel, “Optimasi Algoritma CNN Menggunakan Metode Transfer Learning Untuk Klasifikasi Citra X-Ray Paru-Paru Pneumonia dan Non-Pneunomia,” JTIK (Jurnal Teknik Informatika Kaputama), vol. 6, no. 2, pp. 670–679, 2022.
B. M. Sapata and D. Juniati, “Klasifikasi penyakit paru berdasarkan citra X-ray thorax menggunakan metode fraktal box counting,” MATHunesa: Jurnal Ilmiah Matematika, vol. 7, no. 3, pp. 228–235, 2019.
F. Antony, H. Irsyad, and M. E. Al Rivan, “Knn dan gabor filter serta wiener filter untuk mendiagnosis penyakit pneumonia citra x-ray pada paru-paru,” Jurnal Algoritme, vol. 1, no. 2, pp. 147–155, 2021.
R. A. Wati, H. Irsyad, and M. E. Al Rivan, “Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine,” J. Algoritm, vol. 1, no. 1, pp. 21–32, 2020.
E. Alfonsius and M. Rifai, “PERANCANGAN SISTEM INFORMASI PENJUALAN BARANG BERBASIS VENDOR MANAGED INVENTORY (VMI),” PROSIDING SEMANTIK, vol. 1, no. 2, p. 253, 2015.
M. Rifai, E. Alfonsius, and L. Sanjaya, “PEMODELAN SISTEM INFORMASI ALUMNI STMIK ADHI GUNA BERBASIS WEBSITE,” SEMNASTEKNOMEDIA ONLINE, vol. 5, no. 1, pp. 1–2, 2017.
E. Alfonsius and Z. Arifin, “SISTEMPENENTUAN CALON PENERIMA BEASISWA BIDIKMISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING,” in SISITI: Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Angely, Charles Eferaim Mongi, Winsy Christo Deilan Weku

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Holder in Indonesian Journal of Intelligence Data Science is The Author
LICENCE: CC-BY-NC
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License



