SENTIMENT ANALYSIS ON THE IMPLEMENTATION OF THE INDEPENDENT CAMPUS PROGRAM WITH THE SUPPORT VECTOR MACHINE (SVM) AND NAÏVE BAYES ALGORITHMS

Authors

  • Handira Leo Putra Sinaga Sinaga Universitas Sam Ratulangi
  • Winsy Christo Deilan Weku Universitas Sam Ratulangi
  • Charles Efraim Mongi Universitas Sam Ratulangi

DOI:

https://doi.org/10.35799/ijids.v1i1.50031

Keywords:

Analisis sentimen, svm , naive bayes, mbkm

Abstract

The Kampus Merdeka Program is a government program to improve the quality of higher education in Indonesia. For its implementation, this program has raised various responses and feelings from the public, including from students and alumni of universities. Therefore, it is important to analyze these feelings and opinions to understand how the implementation of this program is received by the public using sentiment analysis. Data will be taken from Twitter tweets using #kampusmerdeka. In this study, sentiment analysis will be carried out on Twitter tweet text data containing responses related to the implementation of the Kampus Merdeka program. The Support Vector Machine (SVM) and Naive Bayes algorithms will be used as methods to conduct this sentiment analysis. By using an 80:20 data division for training data and test data. The accuracy for SVM was 98%, and Naive Bayes was 85%. Both showed good ability to predict overall sentiment in the dataset used.

References

E. Suhartini, A. Yumarni, and S. Maryam, “Pelaksanaan Program Merdeka Belajar Kampus Merdeka dalam upaya peningkatan kinerja perguruan tinggi,” DIDAKTIKA TAUHIDI: Jurnal Pendidikan Guru Sekolah Dasar, vol. 9, no. 1, pp. 65–78, 2022.

E. Simatupang and I. Yuhertiana, “Merdeka belajar kampus merdeka terhadap perubahan paradigma pembelajaran pada pendidikan tinggi: Sebuah tinjauan literatur,” Jurnal Bisnis, Manajemen, Dan Ekonomi, vol. 2, no. 2, pp. 30–38, 2021.

R. A. Wati, H. Irsyad, and M. E. Al Rivan, “Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine,” J. Algoritm, vol. 1, no. 1, pp. 21–32, 2020.

H. Apriyani and K. Kurniati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” Journal of Information Technology Ampera, vol. 1, no. 3, pp. 133–143, 2020.

H. Hermanto, A. Mustopa, and A. Y. Kuntoro, “Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa,” JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), vol. 5, no. 2, pp. 211–220, 2020.

S. J. Pipin and H. Kurniawan, “Analisis Sentimen Kebijakan MBKM Berdasarkan Opini Masyarakat di Twitter Menggunakan LSTM,” Jurnal SIFO Mikroskil, vol. 23, no. 2, pp. 197–208, 2022.

R. Apriani and D. Gustian, “Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,” Jurnal Rekayasa Teknologi Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019.

R. A. Raharjo, I. M. G. Sunarya, and D. G. H. Divayana, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter,” Elkom: Jurnal Elektronika dan Komputer, vol. 15, no. 2, pp. 456–464, 2022.

I. C. R. Drajana, “Metode support vector machine dan forward selection prediksi pembayaran pembelian bahan baku kopra,” ILKOM Jurnal Ilmiah, vol. 9, no. 2, pp. 116–123, 2017.

L. Fregoso-Aparicio, J. Noguez, L. Montesinos, and J. A. García-García, “Machine learning and deep learning predictive models for type 2 diabetes: a systematic review,” Diabetol Metab Syndr, vol. 13, no. 1, p. 148, 2021.

E. Alfonsius and M. Rifai, “PERANCANGAN SISTEM INFORMASI PENJUALAN BARANG BERBASIS VENDOR MANAGED INVENTORY (VMI),” PROSIDING SEMANTIK, vol. 1, no. 2, p. 253, 2015.

M. Rifai, E. Alfonsius, and L. Sanjaya, “PEMODELAN SISTEM INFORMASI ALUMNI STMIK ADHI GUNA BERBASIS WEBSITE,” SEMNASTEKNOMEDIA ONLINE, vol. 5, no. 1, pp. 1–2, 2017.

K. P. Simanjuntak and U. Khaira, “Pengelompokkan Titik Api di Provinsi Jambi dengan Algoritma Agglomerative Hierarchical Clustering: Hotspot Clustering in Jambi Province Using Agglomerative Hierarchical Clustering Algorithm,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 7–16, 2021.

G. Landeras, A. Ortiz-Barredo, and J. J. López, “Forecasting weekly evapotranspiration with ARIMA and artificial neural network models,” Journal of irrigation and drainage engineering, vol. 135, no. 3, pp. 323–334, 2009.

A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of ARIMA and artificial neural networks models for stock price prediction,” J Appl Math, vol. 2014, no. 1, p. 614342, 2014.

R. Ramadhan, Y. A. Sari, and P. P. Adikara, “Perbandingan Pembobotan Term Frequency-Inverse Document Frequency dan Term Frequency-Relevance Frequency terhadap Fitur N-Gram pada Analisis Sentimen,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 11, pp. 5075–5079, 2021.

Published

2022-05-15

How to Cite

Sinaga, H. L. P. S., Weku, W. C. D., & Mongi, C. E. (2022). SENTIMENT ANALYSIS ON THE IMPLEMENTATION OF THE INDEPENDENT CAMPUS PROGRAM WITH THE SUPPORT VECTOR MACHINE (SVM) AND NAÏVE BAYES ALGORITHMS. Indonesian Journal of Intelligence Data Science, 1(1), 39–50. https://doi.org/10.35799/ijids.v1i1.50031