DISEASE IDENTIFICATION SYSTEM IN CABBAGE PLANTS USING CONVOLUTIONAL NEURAL NETWORK (CNN) METHOD

Authors

  • Jordi Sembung Universitas Sam Ratulangi
  • Luther Alexander Latumakulita Universitas Sam Ratulangi
  • Hanny Andrea Huibert Komalig Universitas Sam Ratulangi

DOI:

https://doi.org/10.35799/ijids.v1i2.50078

Keywords:

fold, cross-validation, data, cnn, cabbage

Abstract

Cabbage is a type of vegetable that is commonly found in Indonesian society. There are various diseases that are a problem for cabbage farmers such as Plasmodiophora brassicae Wor (club root), Alternaria brassicae (alternaria leaf spot), and Xanthomonas campestris (black rot). This study aims to create a system that can identify types of cabbage diseases. Convolutional Neural Network is used to identify the type of disease in cabbage plants based on the image of the leaves. The first stage is the Training and validation process using 5-Fold Cross-Validation and 3-Fold Cross-Validation, Resulting in 8 classification models. The evaluation Results show that the lowest Accuracy is 91.67%, and the highest is 100%. The next stage is the Testing process using new data. The Results show that the worst model has an Accuracy of 80% while the best model has an Accuracy of 100%, which means that the identification model built is quite good and stable in classifying the types of diseases in cabbage. The last stage is the process of identifying or Testing the best model that has been built. 15 new data were entered in the identification process and all data were correctly identified by the system with varying probability values.

References

E. Alfonsius and M. Rifai, “PERANCANGAN SISTEM INFORMASI PENJUALAN BARANG BERBASIS VENDOR MANAGED INVENTORY (VMI),” PROSIDING SEMANTIK, vol. 1, no. 2, p. 253, 2015.

M. Rifai, E. Alfonsius, and L. Sanjaya, “PEMODELAN SISTEM INFORMASI ALUMNI STMIK ADHI GUNA BERBASIS WEBSITE,” SEMNASTEKNOMEDIA ONLINE, vol. 5, no. 1, pp. 1–2, 2017.

G. Landeras, A. Ortiz-Barredo, and J. J. López, “Forecasting weekly evapotranspiration with ARIMA and artificial neural network models,” Journal of irrigation and drainage engineering, vol. 135, no. 3, pp. 323–334, 2009.

A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of ARIMA and artificial neural networks models for stock price prediction,” J Appl Math, vol. 2014, no. 1, p. 614342, 2014.

F. Saeed, A. Paul, P. Karthigaikumar, and A. Nayyar, “Convolutional neural network based early fire detection,” Multimed Tools Appl, vol. 79, no. 13, pp. 9083–9099, 2020.

R. M. Diar, R. Y. N. Fu’Adah, and K. Usman, “Klasifikasi Penyakit Paru-Paru Berbasis Pengolahan Citra X Ray Menggunakan Convolutional Neural Network (Classification Of The Lung Diseases Based On X Ray Image Processing Using Convolutional Neural Network),” eProceedings of Engineering, vol. 9, no. 2, 2022.

M. A. Salim, “Budidaya Microgreens-sayuran kecil kaya nutrisi dan menyehatkan,” 2021, Yayasan Lembaga Pendidikan dan Pelatihan Multiliterasi.

R. Dhamayanti, M. F. Rohmah, and S. Zahara, “Penggunaan Deep Learning Dengan Metode Convolutional Neural Network Untuk Klasifikasi Kualitas Sayur Kol Berdasarkan Citra Fisik,” SUBMIT: Jurnal Ilmiah Teknologi Infomasi dan Sains, vol. 1, no. 1, pp. 8–15, 2021.

H. A. Irachman, “Sistem pakar untuk identifikasi penyakit sayuran kubis menggunakan forward chaining berbasis gui,” Ubiquitous: Computers and its Applications Journal, vol. 3, no. 2, pp. 71–76, 2020.

D. Iskandar, “Sistem Pakar Mendiagnosa Penyakit Tanaman Kol Menggunakan Metode Certainty Factor,” Pelita Inform. Budi Darma, vol. 16, no. 2301–9425, pp. 31–38, 2017.

I. A. Pribadi, S. R. Dirmawati, F. E. Febriansyah, and N. Novenda, “Sistem Pakar Untuk Mendiagnosis Penyakit Tanaman Kubis Dengan Metode Forward Chaining,” Jurnal Pepadun, vol. 1, no. 1, pp. 9–18, 2020.

M. Ramadhan, D. I. Mulyana, and M. B. Yel, “Optimasi Algoritma CNN Menggunakan Metode Transfer Learning Untuk Klasifikasi Citra X-Ray Paru-Paru Pneumonia dan Non-Pneunomia,” JTIK (Jurnal Teknik Informatika Kaputama), vol. 6, no. 2, pp. 670–679, 2022.

A. G. Mardika and R. Kartadie, “Mengatur kelembaban tanah menggunakan sensor kelembaban tanah yl-69 berbasis arduino pada media tanam pohon gaharu,” JoEICT (Journal of Education And ICT), vol. 3, no. 2, 2019.

L. Arief and F. Muhammad, “Penerapan YOLO Untuk Identifikasi Dan Penayangan Informasi Peralatan Laboratorium Dalam Mendukung Merdeka Belajar,” Indonesian Journal of Computer Science, vol. 10, no. 2, pp. 301–311, 2021.

L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” Jurnal Nasional Ilmu Komputer, vol. 2, no. 3, pp. 213–232, 2021.

Published

2022-11-15

How to Cite

Sembung, J., Latumakulita, L. A., & Komalig, H. A. H. (2022). DISEASE IDENTIFICATION SYSTEM IN CABBAGE PLANTS USING CONVOLUTIONAL NEURAL NETWORK (CNN) METHOD . Indonesian Journal of Intelligence Data Science, 1(2), 13–25. https://doi.org/10.35799/ijids.v1i2.50078