Model Proyeksi (X/Z2, Y/Z2) pada Kurva Hesian Secara Paralel Menggunakan Mekanisme Kriptografi Kurva Eliptik

Authors

  • Winsy Weku

DOI:

https://doi.org/10.35799/jis.12.1.2012.404

Abstract

MODEL PROYEKSI (X/Z2, Y/Z2) PADA KURVA HESIAN SECARA PARALEL MENGGUNAKAN MEKANISME KRIPTOGRAFI KURVA ELIPTIK

ABSTRAK

Suatu kunci publik, Elliptic Curve Cryptography (ECC) dikenal sebagai algoritma yang paling aman yang digunakan untuk memproteksi informasi sepanjang melakukan transmisi.  ECC dalam komputasi aritemetika didapatkan berdasarkan operasi inversi modular. Inversi modular adalah operasi aritmetika dan operasi yang sangat panjang yang didapatkan berdasar ECC crypto-processor. Penggunaan koordinat proyeksi untuk menentukan Kurva Eliptik/ Elliptic Curves pada kenyataannya untuk memastikan koordinat proyeksi yang sebelumnya telah ditentukan oleh kurva eliptik E: y2 = x3 + ax + b yang didefinisikan melalui Galois field GF(p)untuk melakukan operasi aritemtika dimana dapat diketemukan bahwa terdapat beberapa multiplikasi yang dapat diimplementasikan secara paralel untuk mendapatkan performa yang tinggi. Pada penelitian ini, akan dibahas tentang sistem koordinat proyeksi Hessian (X/Z2, Y,Z2) untuk meningkatkan operasi penggandaan ECC dengan menggunakan pengali paralel untuk mendapatkan paralel yang maksimum untuk mendapatkan hasil maksimal.

Kata kunci: Elliptic Curve Cryptography, Public-Key Cryptosystem, Galois Fields of Primes GF(p

PROJECTION MODEL (X/Z2, Y/Z2) ON PARALLEL HESIAN CURVE USING CRYPTOGRAPHY ELIPTIC CURVE MECHANISM

ABSTRACT

As a public key cryptography, Elliptic Curve Cryptography (ECC) is well known to be the most secure algorithms that can be used to protect information during the transmission. ECC in its arithmetic computations suffers from modular inversion operation. Modular Inversion is a main arithmetic and very long-time operation that performed by the ECC crypto-processor. The use of projective coordinates to define the Elliptic Curves (EC) instead of affine coordinates replaced the inversion operations by several multiplication operations. Many types of projective coordinates have been proposed for the elliptic curve E: y2 = x3 + ax + b which is defined over a Galois field GF(p) to do EC arithmetic operations where it was found that these several multiplications can be implemented in some parallel fashion to obtain higher performance. In this work, we will study Hessian projective coordinates systems (X/Z2, Y,Z2) over GF (p) to perform ECC doubling operation by using parallel multipliers to obtain maximum parallelism to achieve maximum gain.

Keywords: Elliptic Curve Cryptography , Public-Key Cryptosystem , Galois Fields of  Primes GF(p)

Author Biography

Winsy Weku

Program Studi Matematika Universitas Sam Ratulangi Manado

Downloads

Published

2012-04-30

How to Cite

Weku, W. (2012). Model Proyeksi (X/Z2, Y/Z2) pada Kurva Hesian Secara Paralel Menggunakan Mekanisme Kriptografi Kurva Eliptik. Jurnal Ilmiah Sains, 12(1), 65–71. https://doi.org/10.35799/jis.12.1.2012.404

Issue

Section

Articles