SEIR Model of Dengue Hemorrhagic Fever with the Life Stage Structure of the Aedes albopictus Mosquito

Authors

  • James U.L. Mangobi Jurusan Matematika Fakultas Matematika, Ilmu Pengetahuan Alam dan Kebumian Universitas Negeri Manado, Manado Indonesia https://orcid.org/0009-0005-8836-9279
  • Santje Matulende Salajang Jurusan Matematika, Fakultas Matematika, Ilmu Pengetahuan Alam dan Kebumian, Universitas Negeri Manado, Indonesia
  • Cori Pitoy Jurusan Matematika, Fakultas Matematika, Ilmu Pengetahuan Alam dan Kebumian, Universitas Negeri Manado, Indonesia

DOI:

https://doi.org/10.35799/jis.v23i2.48235

Keywords:

A stage-structured model, Aedes albopictus, dengue hemorrhagic fever, disease-free equilibrium, dengue virus

Abstract

Dengue Hemorrhagic Fever (DHF) is an acute febrile illness caused by the dengue virus. This virus belongs to group B arthropod-borne viruses (Arboviroses) of the genus Flavivirus, which has four serotypes, namely Dengue I, Dengue II, Dengue III, and Dengue IV. Dengue virus is transmitted by Aedes sp. The SEIR model studied places the Aedes albopictus mosquito as the main vector. Many DHF cases are caused by this mosquito because it has a larger coverage area and is more difficult to control. All Aedes mosquito species have four life stages, namely: (1) egg, (2) larva, (3) pupa, and (4) adult. A stage-structured model was chosen because Ae. albopictus has varying rates of development and mortality at different stages. This model study includes determining the fixed point, determining the basic reproduction number R0, analyzing the stability of the fixed point, and simulating the population dynamics of dengue virus transmission. This model indicates the presence of endemics in an area for certain parameter values. This model produces a disease-free equilibrium, or DFE, which will be stable when R0 < 1, otherwise unstable when R0 > 1. The dynamic results for each human population (susceptible, exposed, infected, and cured) through observations in numerical simulations are influenced by the selection of the R0 value. The value of R0 is influenced by the mosquito death rate parameter and the average bite rate of infected mosquitoes. Population dynamics simulations show that an increase in the death rate of mosquitoes will reduce the number of humans exposed to them. In addition, an increase in the average number of infected mosquito bites will increase the number of humans exposed. Changes in the number of humans in each population tend to be different for each increase in the mosquito mortality rate or for each increase in the average number of infected mosquito bites.

 

 

References

Anonymous. (2022). Aedes Mosquito Life Cycle. https://www.cdc.gov/mosquitoes/about/life-cycles/aedes.html.

Anonymous. (2023). Dengue and severe dengue. https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue.

Asih, T.S.N., Kharis, M., Syafa’atullah, M.F., & Isfandari, F. (2021). Temperature influences on dengue hemorrhagic fever mathematical model. Journal of Physics: Conference Series, 1918(4), 42-46. https://doi.org/10.1088/1742-6596/1918/4/042046.

Bodson, M. (2020). Explaining the Routh–Hurwitz Criterion: A Tutorial Presentation [Focus on Education]. IEEE Control Systems Magazine, 40(1), 45–51. https://doi.org/10.1109/MCS.2019.2949974.

Chamnan, A., & Pongsumpun, P. (2021). Analyze of SEIR Dengue Infectious Transmission Model with Vaccination. Proceedings of the 7th International Conference on Bioinformatics Research and Applications, 1–5. https://doi.org/10.1145/3440067.3440068.

de los Reyes, A.A., & Escaner, J.M.L. (2018). Dengue in the Philippines: model and analysis of parameters affecting transmission. Journal of Biological Dynamics, 12(1), 894–912. https://doi.org/10.1080/17513758.2018.1535096.

Erguler, K., Smith-Unna, S.E., Waldock, J., Proestos, Y., Christophides, G.K., Lelieveld, J., & Parham, P.E. (2016). Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). PLOS ONE, 11(2), e0149282-. https://doi.org/10.1371/journal.pone.0149282.

Jia, P., Chen, X., Chen, J., Lu, L., Liu, Q., & Tan, X. (2017). How does the dengue vector mosquito Aedes albopictus respond to global warming? Parasites & Vectors, 10(1), 140. https://doi.org/10.1186/s13071-017-2071-2.

Khan, A., Hassan, M., & Imran, M. (2014). Estimating the basic reproduction number for single-strain dengue fever epidemics. Infectious Diseases of Poverty, 3(1), 12. https://doi.org/10.1186/2049-9957-3-12.

Levin, M., Udi, Y., Solomonov, I., & Sagi, I. (2017). Next generation matrix metalloproteinase inhibitors — Novel strategies bring new prospects. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(11, Part A), 1927–1939. https://doi.org/https://doi.org/10.1016/j.bbamcr.2017.06.009.

Mangobi, J., Sianturi, P., & Ardana, N. (2011). Model Matematik Demam Berdarah Dengue dengan Nyamuk Aedes albopictus sebagai Vektor [Tesis]. Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.

Marini, G., Poletti, P., Giacobini, M., Pugliese, A., Merler, S., & Rosà, R. (2016). The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy. PLOS ONE, 11(4), e0154018. https://doi.org/10.1371/journal.pone.0154018.

Metelmann, S., Caminade, C., Jones, A.E., Medlock, J.M., Baylis, M., & Morse, A.P. (2019). The UK’s suitability for Aedes albopictus in current and future climates. Journal of The Royal Society Interface, 16(152), 20180761. https://doi.org/10.1098/rsif.2018.0761.

Ndii, M.Z., Anggriani, N., Messakh, J. J., & Djahi, B.S. (2021). Estimating the reproduction number and designing the integrated strategies against dengue. Results in Physics, 27, 104473. https://doi.org/10.1016/j.rinp.2021.104473.

Ndii, M.Z., Hickson, R.I., Allingham, D., & Mercer, G.N. (2015). Modelling the transmission dynamics of dengue in the presence of Wolbachia. Mathematical Biosciences, 262, 157–166. https://doi.org/10.1016/j.mbs.2014.12.011.

Posny, D., & Wang, J. (2014). Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Applied Mathematics and Computation, 242, 473–490. https://doi.org/https://doi.org/10.1016/j.amc.2014.05.079.

Saha, P., Sikdar, G.C., & Ghosh, U. (2023). Transmission dynamics and control strategy of single-strain dengue disease. International Journal of Dynamics and Control, 11(3), 1396–1414. https://doi.org/10.1007/s40435-022-01027-y.

Sianturi, P. (2015). Stochastic Epidemic Model of Dengue Fever Spread in West Java Province. Prosiding Seminar Hasil-Hasil PPM IPB, Vol. I, 214–228.

Taghikhani, R., Sharomi, O., & Gumel, A. B. (2020). Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Mathematical Biosciences, 328, 108426. https://doi.org/10.1016/j.mbs.2020.108426.

Yang, H. M. (2014). The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling. Biosystems, 126, 52–75. https://doi.org/https://doi.org/10.1016/j.biosystems.2014.10.002.

Downloads

Published

2023-10-20

How to Cite

Mangobi, J. U., Salajang, S. M., & Pitoy, C. (2023). SEIR Model of Dengue Hemorrhagic Fever with the Life Stage Structure of the Aedes albopictus Mosquito. Jurnal Ilmiah Sains, 23(2), 118–129. https://doi.org/10.35799/jis.v23i2.48235

Issue

Section

Articles