Kernel Performance in Geographically Weighted Regression Model to Determine Factors Affecting Human Development Index in South Sulawesi Province
DOI:
https://doi.org/10.35799/jis.v23i2.48867Abstract
The aims of this study was determine at kernel performance by selecting the best model from three different types of kernels and determining the factors that influence the Human Development Index in South Sulawesi Province using the Geographically Weighted Regression (GWR) model This study uses secondary data from the Central Bureau of Statistics of South Sulawesi Province with independent variables namely human development index (HDI, Y) and the dependent variable namely life expectancy (UHH) (X1), per capita expenditures (X2) and gross regional domestic product (GRDP) (X3) and the longitude and latitude values obtained from the google maps application. The methods carried out in this study are the GWR method and the kernels used are gaussian kernels, bisquare kernels and tricube kernels. The results of this study show that the best model that can be used is the GWR model with a tricube kernel with AIC values = 81.5543700 and R2 = 90.67 percent. GWR Model with kernel tricube is able to determine the factors that influence the human development index in South Sulawesi in 2022.
Keywords: Geographically Weighted Regression; human development index; tricube kernel
References
Badan Pusat Statistik. (2022). Publikasi Indeks Pembangunan Manusia (IPM) Sulawesi Selatan Tahun 2022.
Desriwendi, D., Hoyyi, A., & Wuryandari, T. (2015). Pemodelan geographically weighted logistic regression (GWLR) dengan fungsi pembobot fixed gaussian kernel dan adaptive gaussian kernel (Studi Kasus : Laju Pertumbuhan Penduduk Provinsi Jawa Tengah). Jurnal Gaussian, 4(2), 193–204. https://doi.org/10.14710/j. gauss.4.2.193%20-%20204
Fadli, M.R., Goejantoro, R., & Wasono, D. (2018). Pemodelan Geographically Weighted Regression (GWR) Dengan Fungsi Pembobot Tricube Terhadap Angka Kematian Ibu (AKI) Di Kabupaten Kutai Kartanegara Tahun 2015. Jurnal Eksponensial, 9(1), 11–18.
Fotheringham, A.C.B., & Charlton, M. (2002). Geographically Weighted Regression, the analysis of spatially varying relationships. John Wiley & Sons, Chichester.
Isbiyantoro, K., Wilandari, Y., & Sugito. (2014). Perbandingan Model Pertumbuhan Ekonomi Di Jawa Tengah dengan Metode Regresi Linier Berganda dan Metode Geographically Weighted Regression. Jurnal Gaussian, 3(3), 461–469.
Lutfiani, N., & Scolastika, M. (2017). Pemodelan Geographically Weighted Regression (GWR) dengan Fungsi Pembobot Kernel Gaussian dan Bi-square. Journal of Mathematics, 5(1), 82–91.
Mahroji, D. (2019). Pengaruh Indeks Pembangunan Manusia Terhadap Tingkat Pengangguran Di Provinsi Banten. Jurnal Ekonomi, 9(1), 51–72.
Nadya, M., Rahayu, W., & Santi, V.M. (2017). Analisis Geographically Weighted Regression pada Kasus Pneumonia Balita di Provinsi Jawa Barat. Jurnal Statistika Dan Aplikasinya, 1(1), 23–32.
Ramadayani, M.R., Fariani H.I., & Ibnu, H. (2022). Pemodelan Geographically Weighted Regression Menggunakan Pembobot Kernel Fixed dan Adaptive pada Kasus Tingkat Pengangguran Terbuka di Indonesia. JMT : Jurnal Matematika Dan Terapan, 4(1), 51–62.
Susanti, Y. (2018). Penerapan Model Geographically Weighted Regression(GWR) Pada Produksi Ubi Jalar. Indonesian Journal of Applied Statistics, 1(1), 52–69.
Tanadjaja, A., Zain, I., & Wibowo, W. (2017). Pemodelan Angka Harapan Hidup di Papua dengan pendekatan Geographically Weighted Regression. Jurnal Sains Dan Seni ITS, 6(1), 1–7.
Vebiriyana, M., Darsyah, Y.M., & Nur, I. (2015). Pemodelan Geographically Weighted Regression Dengan Fungsi Kernel Bisquare Terhadap Faktor-Faktor Yang Mempengaruhi Tingkat Kemiskinan Di Kabupaten Demak. Jurnal Statistika, 3(1), 34–39.
Weku, W. 2020. Eksplorasi efektifitas model spasial untuk menjelaskan hubungan antara penduduk dan infrastruktur terhadap kesejahteraan masyarakat Kota Manado. AITI: Jurnal Teknologi Informasi, 17(2), 130–142.
Weku, W., Pramoedyo, H., Widodo, A., & Fitriani, R. (2022). Optimal Bandwidth for Geographically Weighted Regression To Model The Spatial Dependency Of Land Prices In Manado, North Sulawesi Province, Indonesia. Geography, Environment, Sustainability, 15(2), 84–90.
Yasin, H. (2011). Pemilihan Variabel pada Model Geographically Weighted Regression. Jurnal Media Statistika, 4(2), 63–72.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Anglia Fransisca Adatunaung, Djoni Hatidja, Winsy Christo Deilan Weku
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
LICENCE: CC-BY-NC
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License