Phytochemical Analysis GC-MS Results of Parmelia sulcata (Ascomycota: Parmeliaceae) As a Natural Color

Authors

  • Muzzazinah Muzzazinah Biology Education, Faculty of Teacher Training and Education, Sebelas Maret University Surakarta, Surakarta, Indonesia, 57126)
  • Awanda Elrita Putri Biology Education, Faculty of Teacher Training and Education, Sebelas Maret University Surakarta, Surakarta, Indonesia, 57126)
  • Nurmiyati Nurmiyati Biology Education, Faculty of Teacher Training and Education, Sebelas Maret University Surakarta, Surakarta, Indonesia, 57126)
  • Alanindra Saputra Biology Education, Faculty of Teacher Training and Education, Sebelas Maret University Surakarta, Surakarta, Indonesia, 57126)

DOI:

https://doi.org/10.35799/jis.v25i1.56404

Keywords:

Phytochemistry, GC-MS, Compound content, Parmelia sulcata, Natural dyes

Abstract

A Parmelia sulcata is the largest family of lichen fungi, consisting of around 2,700 species spread across 80 countries. Lichen is an organism resulting from symbiosis between fungi and algae. This research aims to analyze the phytochemical results and find out whether Parmelia sulcata has potential as a natural dye to be applied to natural fiber fabrics. The research location is Tanen Village, Kemuning, Ngargoyoso, Central Java. Sample exploration was carried out using the exploration method, the samples were analyzed using GC-MS, where from the GC-MS results there were various compounds, therefore the researchers wanted to provide laboratory test data regarding the chemical content of the Parmelia sulcata species. Phytochemical and GC-MS test results are as follows: 3,5-Dihydroxytoluene 33.77%; 2-[3' Hydroxypropyl]-1,4-Benzenediol 3.32%; 1,3-Benzenediol, 2-Methyl 3.75%; Resorcyclic Beta Acid, 6-Methyl, Methyl Ester 1.43%; Resorcyclic Beta Acid, 6-Methyl, Methyl Ester 8.56%; 3-Cyclohexene-1-Methanol,6-1(1-Hydroxycyclopentyl)-, Cis 1.91%; Resorcyclic Beta Acid, 6-Methyl, Methyl Ester 37.15%; Acetonitrile, 9h-Pyrolo[1,2-A] Indole-9-Ylidene 1.00%; Fluoranthene-2-Carboxaldehyde 3.62%, this shows that Parmelia sulcata has less potential to be used as a natural dyes.

Keywords: Phytochemistry; Compound Content; Parmelia sulcata; Natural Dyes

References

Andriyanti, W., Darsono, D., Nuraini, E., Indrayani, L., & Triwiswara, M. (2020). Aplikasi Teknologi Mesin Berkas Elektron Pada Proses Pewarnaan Batik Katun Dengan Pewarna Alami Menggunakan Metode Curing. GANENDRA Majalah IPTEK Nuklir, 23(1), 39. https://doi.org/10.17146/gnd.2020.23.1.5860

Azzahra, A. (2024). Analisis Impak Cara Penyajian Suhu Tinggi Terhadap Mutu Nugget Ayam Siap Konsumsi. Jurnal Sains dan Teknologi Linchen Institut, 1(1), 1–17.

Candan, M., Yilmaz, M., Tay, T., Erdem, M., & Türk, A.Ö. (2007). Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 62(7–8), 619–621. https://doi.org/10.1515/znc-2007-7-827

Darwis, W., Supriati, R., Sipriyadi, Wibowo, R.H., & Al Siddiq, Y.U. (2021). Antibacterial Potency of Lichen Teloschisthes flavicans From Kepahiang District Against Staphylococcus aureus and Pseudomonas aeruginosa . Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020), 14,547–552. https://doi.org/10.2991/absr.k.210621.091

Fernandes, A., Maharani, R. & Supartini. (2018). Analisis Fitokimia dan GC-MS Daun Ungu Kucing Sebagai Bahan Obat Aktif. JURNAL Penelitian Ekosistem Dipterokarpa, 4(1), 1–8.

Freitas, M.C., & Nobre, A.S. (1997). Bioaccumulation of heavy metals using Parmelia sulcata and parmelia caperata for air pollution studies. Journal of Radioanalytical and Nuclear Chemistry, 217(1), 17–20. https://doi.org/10.1007/BF02055343

Hadiyati, M. & Setyawati, M.T.R. (2013). Kandungan sulfur dan klorofil thallus lichen Parmelia sp. dan Graphis sp. pada pohon peneduh jalan di Kecamatan Pontianak Utara. Protobiont, 2(1), 12–17.

Irawan, S.R.K., Putri, E.C., Situngkir, D., Yusvita, F. & Rusdy, M.D.R. (2022). Factors Related To Two-Wheeled Safety Riding Behavior At Production Planning Workers At Pt. Yuasa Battery Indonesia in 2021. Journal of Vocational Health Studies, 6(2), 107–117. https://doi.org/10.20473/jvhs.v6.i2.2022.107-117

Kaushik, A., & Giri, P.P. (2020). Lichens : Natural alternatives in textiles finishing. Lichen‐Derived Products: Extraction and Applications, 179–187.

Madjeni, H.D., Bullu, N.I., & Hendrik, A.C. (2020). Keanekaragaman Lumut Kerak (lichen) Sebagai Bioindikator Pencemaran Udara di Taman Wisata Alam Camplong Kabupaten Kupang. Indigenous Biologi: Jurnal Pendidikan Dan Sains Biologi, 2(2), 65–72. https://doi.org/10.33323/indigenous.v2i2.37

Marantika, V.M., & Trimulyono, G. (2019). Aktivitas Antifungi Ekstrak Lichen Parmelia sulcata terhadap Pertumbuhan Jamur Alternaria porri Antifungal Activity of Lichen Extract Parmelia sulcata to the Growth of Alternaria porri. Jurnal LenteraBio, 8(3), 231–236.

Matvienko, A.I., Evgrafova, S.Y., Kovaleva, N.M., Sideleva, E.V., Sitnikova, M.V., Menyailo, O.V. & Masyagina, O.V. (2024). Greenhouse Gas Fluxes from the Epiphytic Lichens: Incubation Experiments. Forests, 15(1), 107. https://doi.org/ 10.3390/f15010107

Ncanana, Z.S., Vashistha, V.K., Singh, P.P. & Pullabhotla, R.V.S.R. (2022). Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts. Pure and Applied Chemistry, 94(7), 859–867. https://doi.org/10.1515/ pac-2021-1005

Pavlova, E.A. & Maslov, A.I. (2008). Nitrate uptake by isolated bionts of the lichen Parmelia sulcata. Russ J Plant Physiol, 55, 475–479. https://doi.org/10.1134/ S1021443708040079

Purwanti, F., Isnawati & Trimulyono, G. (2017). Efektivitas Antibakteri Ekstrak Lichen Parmelia Sulcata terhadap Pertumbuhan Bakteri Shigella dysenteriae dan Bacillus cereus. LenteraBio, 6(3), 55–61. http://ejournal.unesa.ac.id/index.php/lenterabio

Roziaty, E. & Aini, L. (2023). Keragamann Lumut Kerak Sebagai Bioindikator Kualitas Hutan di Kawasan Cemoro Sewu Magetan, Jawa Timur. BIOSCIENTIAE, 20(2), 95–101.

Su, K.Y., Yu, C.Y., Chen, Y.P., Hua, K.F. & Chen, Y.L.S. (2014). 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC Complementary and Alternative Medicine, 14. https://doi.org/10.1186/1472-6882-14-21

Suharno, S., Hasifa, H. & Sufaati, S. (2024). Using the Diversity of Lichens in Maribu Forest Area, West Sentani District, Jayapura Regency as a Baseline Data on Environmental Changes. Jurnal Ilmu Kehutanan, 18(1), 80–89. https://doi.org/10.22146/ jik.v18i1.7850

Wu, H., Guo, J., Chen, S., Liu, X., Zhou, Y., Zhang, X. & Xu, X. (2013). Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 72(151), 267–291. https://doi.org/10.1016/ j.jpba.2012.09.004

Downloads

Published

2025-04-06

How to Cite

Muzzazinah, M., Putri, A. E., Nurmiyati, N., & Saputra, A. (2025). Phytochemical Analysis GC-MS Results of Parmelia sulcata (Ascomycota: Parmeliaceae) As a Natural Color. Jurnal Ilmiah Sains, 25(1), 23–36. https://doi.org/10.35799/jis.v25i1.56404

Issue

Section

Articles