Effectiveness of Activated Carbon from Corn Cobs (Zea mays L.) as an Adsorbent for Methylene Blue Dyes

Authors

  • Henry Fonda Aritonang Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia https://orcid.org/0000-0002-0849-9390
  • Fajar Saut Hamonangan Sitinjak Program Studi Kimia,Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sam Ratulangi, Manado
  • Audy Denny Wuntu Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia https://orcid.org/0000-0003-1935-8769
  • Harry Julius Koleangan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
  • Widya Astuti Lolo Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia

DOI:

https://doi.org/10.35799/jis.v25i2.58742

Keywords:

Adsorbent, activated carbon, methylene blue, sodium hydroxide, corn cobs

Abstract

Wastewater treatment is one of the methods used to reduce pollution levels and the harmful effects of wastewater on the environment and human health. Wastewater containing dye substances also has the potential to kill organisms living in the surrounding environment. One solution for treating synthetic wastewater is through the adsorption process. The adsorbent used is derived from corn cobs (Zea mays L.), so the aim of this study is to synthesize and evaluate activated carbon from corn cobs as an adsorbent for methylene blue (MB). To achieve this, the pyrolysis method was employed by placing corn cobs in a furnace heated to 600 °C for 3 hours. The resulting activated carbon was then treated with either H₂SO₄ or NaOH for activation.The produced activated carbon was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscope-Energy Dispersive Spectrometry (SEM-EDS) to analyze its crystal structure, functional groups, morphology, and elemental composition. Characterization results revealed that the activated carbon had a small crystallite size and irregular pores. Adsorption tests using a UV-Vis Spectrophotometer demonstrated that corn cob-based activated carbon efficiently adsorbed MB. The highest adsorption efficiency was achieved at a contact time of 90 minutes (99.03%), pH 7 (99.01%), and a concentration of 50 ppm (99.17%) using 0.1 grams of adsorbent. Adsorption isotherm analysis indicated that the process followed the Freundlich isotherm model, suggesting multilayer adsorption on a heterogeneous adsorbent surface.

Keywords: Adsorbent; activated carbon; methylene blue; sodium hydroxide; corn cobs

References

Amelia, H., Fitria, R., & Sunardi, S. (2023). Kajian Isoterm Adsorpsi Metilen Biru pada Biochar Kulit Sagu (Metroxylon sagu). Justek: Jurnal Sains Dan Teknologi, 6(1), 6(1), 135–142.

Amri, T. A., Priyanto, A., Ramadhan, F., & Gustantia, Y. P. (2017). Potensi Limbah Tongkol Jagung dan Sabut Buah Pinang Sebagai Adsorben. Prosiding CELSciTech, 2.

Aritonang, H. F., Batawi, L., & Wuntu, A. W. (2024). Effect of calcination temperature on size and adsorption properties of magnetite nanoparticles synthesized from iron sand as adsorbent for methylene blue. AIP Conference Proceeding, 050001.

Baunsele, A. B., Boelan, E. G., Kopon, A. M., Taek, M. M., Tukan, G. D., & Missa, H. (2023). Penggunaan Sabut Kelapa Teraktivasi NaOH sebagai Adsorben Metilen Biru. KOVALEN: Jurnal Riset Kimia, 9(1), 43–54.

Dwijayanti, U., Gunawan, G., Widodo, S., Haris, A., Suyati, L., & Lusiana, R.A. (2020). Adsorpsi Methylene Blue (MB) Menggunakan Abu Layang Batubara Teraktivasi Larutan NaOH. Analit: Analytical and Environmental Chemistry, 5(1), 1–14. https://doi.org/10.23960/aec.v5.i1.2020.p01-14

Ernawati, E., Maflihah, I., Ubang, I., Podung, P. N., Nurbaiti, W., & Lestari, S. (2021). Adsorpsi Metilen Biru Dengan Menggunakan Arang Aktif Dari Ampas Kopi. Prosiding Seminar Nasional Kimia, 173–179.

Gupta, G. K., Ram, M., Bala, R., Kapur, M., & Mondal, M. K. (2018). Pyrolysis of chemically treated corncob for biochar production and its application in Cr(VI) removal. Environmental Progress & Sustainable Energy, 37(5), 1606–1617. https://doi.org/10.1002/ep.12838

Harahap, H., Nawansyah, R., Nasution, H., Taslim, T., & Iriany, I. (2018). Isolationand Characterization of Nanocrystal from Corncob Waste Using H2SO4 Hydrolysis Method (RESEARCH NOTE). International Journal of Engineering, 31(4), 533–537.

Hayu, L.D.R., Nasra, E., Azhar, M., & Etika, S.B. (2022). Adsorpsi Zat Warna Methylene Blue Menggunakan Karbon Aktif dari Kulit Durian (Durio zibethinus Murr.). Periodic, 11(1), 8–13.

Huang, G., He, J., Zhang, X., Feng, M., Tan, Y., Lv, C., Huang, H., & Jin, Z. (2021). Applications of Lambert-Beer law in the preparation and performance evaluation of graphene modified asphalt. Construction and Building Materials, 273, 121582. https://doi.org/10.1016/j.conbuildmat.2020.121582

Liu, Y., Ma, S., & Chen, J. (2018). A novel pyro-hydrochar via sequential carbonization of biomass waste: Preparation, characterization and adsorption capacity. Journal of Cleaner Production, 176, 187–195.

Maria, N., Rivena, I., Noraji, W.S.M., Dania, U., & Hartati, Y. (2021). Pemanfaatan karbon aktif dari kulit singkong (Manihot Utilissila) sebagai adsorben zat pewarna tekstil methylene blue. Bivalen: Chemical Studies Journal, 4(2), 42.

Megasari, K., Herdiyanti, H., Nurliati, G., Kadarwati, A., & & Swantomo, D. (2020). Sintesis Silika Xerogel Dari Abu Daun Bambu Untuk Adsorpsi Limbah Simulasi Uranium. Jurnal Forum Nuklir, 13(3), 27–36.

Meilianti, M. (2020). Pembuatan Karbon Aktif Dari Arang Tongkol Jagung dengan Variasi Konsentrasi Aktivator Natrium Karbonat (Na2CO3). Jurnal Distilasi, 5(1), 14–20. https://doi.org/10.32502/jd.v5i1.3025

Mentari, V. A., Handika, G., & Maulina, S. (2018). Perbandingan Gugus Fungsi dan Morfologi Permukaan Karbon Aktif dari Pelepah Kelapa Sawit Menggunakan Aktivator Asam Fosfat (H3PO4) dan Asam Nitrat (HNO3). Jurnal Teknik Kimia USU, 7(1), 16–20.

Mousavi, S. M., Hashemi, S. A., Esmaeili, H., Amani, A. M., & Mojoudi, F. (2018). Synthesis of Fe3O4 Nanoparticles Modified by Oak Shell for Treatment of Wastewater Containing Ni(II). Acta Chimica Slovenica, 65(3), 750–756. https://doi.org/10.17344/acsi.2018.4536

Pangemanan, D. A., Suryanto, E., & Yamlean, P. V. (2020). Skrining Fitokimia Uji Aktivitas Antioksidan dan Tabir Surya pada Tanaman Jagung (Zea mays L.). PHARMACON, 9(2), 194–204. https://doi.org/10.35799/pha.9.2020.29271

Paranita, D. (2020). Kombinasi Campuran Pelepah Kelapa Sawit Dan Kulit Kacang Tanah Sebagai Bahan Baku Pembuatan Biobriket. Jurnal Al Ulum LPPM Universitas Al Washliyah Medan, 8(2), 45–53.

Pauner, I. D. M., Senolinggi, G. P., Dullah, F. A., Laseduw, G. P. D., & Aritonang, H. F. (2024). Magnetic nanocomposite-chitosan based on North Sulawesi iron sand as heavy metal adsorbent and synthetic dyes in textile industry waste. AIP Conference Proceedings, 020001.

Ristianingsih, Y., Istiani, A., & Irfandy, F. (2020). Kesetimbangan adsorbsi zat warna metilen blue dengan adsorben karbon aktif tongkol jagung terimpregnasi Fe2O3. Jurnal Teknologi Agro-Industri, 7(1), 47–55.

Rohmah, R., & Yuwita, P. E. (2023). Synthesis and characterization of nano activated carbon of corn cob charcoal as an adsorbent of health masks. In AIP Conference Proceedings AIP Publishing, 2837(1). AIP Conference Proceedings AIP Publishing, 2837(1).

Saban, A., Jasruddin, J., & Husain, H. (2023). Pengaruh Konsentrasi Aktivator (NaOH dan HCl) Terhadap Karakteristik Karbon Aktif dari Tongkol Jagung. Jurnal Sains Dan Pendidikan Fisika, 19(2), 219–228. https://doi.org/10.35580/jspf.v19i2.45044

Sengkey, A., Aritonang, H. F., & Wuntu, A. D. (2025). Sintesis Karbon Aktif Sabut Pinang Lokal (Areca catechu) Sebagai Adsorben Ciprofloxacin. CHEMISTRY PROGRESS, 18(1), 40–48. https://doi.org/10.35799/cp.18.1.2025.62656

Wahyuni, D., Harmawanda, S., Nurhanisa, M., Hasanuddin, H., Zulfian, Z., & Nurhasanah, N. (2023). Efektivitas Karbon Aktif dari Limbah Tongkol Jagung (Zea mays) dengan Variasi Aktivator Asam Klorida dalam Penyerapan Logam Besi pada Air Gambut. Jurnal Fisika, 13(1), 10–19. https://doi.org/10.15294/jf.v13i1.42778

Wang, Y., Zhou, Y., Jiang, G., Chen, P., & Chen, Z. (2020). One-step fabrication of carbonaceous adsorbent from corncob for enhancing adsorption capability of methylene blue removal. Scientific Reports, 12(1), 12515.

Zhu, J., Li, Y., Xu, L., & Liu, Z. (2018). Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents. Ecotoxicology and Environmental Safety, 165, 115–125. https://doi.org/10.1016/j.ecoenv.2018.08.105

Downloads

Published

2025-09-02

How to Cite

Aritonang, H. F., Sitinjak, F. S. H., Wuntu, A. D., Koleangan, H. J., & Lolo, W. A. (2025). Effectiveness of Activated Carbon from Corn Cobs (Zea mays L.) as an Adsorbent for Methylene Blue Dyes. Jurnal Ilmiah Sains, 25(2), 99–113. https://doi.org/10.35799/jis.v25i2.58742

Issue

Section

Articles