Optimization Media for the Growth of Chlorella vulgaris in Co-Culture with Bacteria
DOI:
https://doi.org/10.35799/jis.v25i2.61326Keywords:
Bacteria, Chlorella vulgaris, culture media, optimizationAbstract
The demand for fuel energy in Indonesia is continuously rising, while the availability of fossil fuels is increasingly limited. Consequently, an alternative renewable biodiesel feedstock, such as the microalga Chlorella vulgaris, is urgently needed. One effective strategy to boost microalgal biomass is through co-culture with bacteria, as the positive interactions between the two have been proven to accelerate microalgal growth rates via various mechanisms. As an essential factor in the cultivation process, the selection of a culture medium that provides optimal nutrition is a crucial step to support maximum C. vulgaris growth. This study, therefore, aims to evaluate the optimization of both the culture medium and the bacterial co-culture technique to maximize C. vulgaris proliferation. We compared the effectiveness of two culture media (Gusrina Medium and Guillard Medium) and two levels of bacterial addition (monoculture and co-culture). Cultivation was performed in a photobioreactor with a 12-hour on : 12-hour off aeration cycle and a 16-hour light : 8-hour dark photoperiod. The results demonstrate that microalgae-bacteria co-culture in Gusrina Medium yielded the most optimal C. vulgaris cell growth. The best bacterial combination utilized in the co-culture consisted of IAA (Indole Acetic Acid) producing bacteria, phosphate-solubilizing bacteria, and amylolytic bacteria. This specific combination of medium and bacteria is recommended for the large-scale development of C. vulgaris biomass as a sustainable biodiesel feedstock.
References
Abinandan, S., Subashchandrabose, S.R., Venkateswarlu, K., & Megharaj, M. (2019). Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 39(8), 981–998. doi:10.1080/07388551.2019.1654972
Agwa, O., & Abu, G. (2016). Influence of Various Nitrogen Sources on Biomass and Lipid Production by Chlorella vulgaris. British Biotechnology Journal, 15(2), 1–13. doi:10.9734/bbj/2016/21727
Ajayan KV. (2023). Microalgal Cultivation: Cultivation Media and its Supplementary Compounds. Journal of Food and Agriculture Research, 3(2), 145–167. doi:10.47509/JFAR.2023.v03i02.04
Amalo, D., Gaol, M. L., & Beribe, H. D. (2019). Pengaruh Konsentrasi Air Kelapa Terhadap Pertumbuhan Mikroalga Chlorella vulgaris. Jurnal Biotropikal Sains, 16(1), 28–39.
Amin, S.A., Hmelo, L.R., Van Tol, H.M., Durham, B.P., Carlson, L.T., Heal, K.R., & Armbrust, E.V. (2015). Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 522(7554), 98–101. doi:10.1038/nature14488
Chen, J., Jiang, X., & Wei, D. (2020). Effects of urea on cell growth and physiological response in pigment biosynthesis in mixotrophic Chromochloris zofingiensis. Journal of Applied Phycology, 32(3), 1607–1618. doi:10.1007/s10811-020-02114-3
Chowdury, K.H., Nahar, N., & Deb, U.K. (2020). The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review. Computational Water, Energy, and Environmental Engineering, 09(04), 185–215. doi:10.4236/cweee.2020.94012
Contreras-Angulo, J.R., Mata, T.M., Cuellar-Bermudez, S.P., Caetano, N.S., Chandra, R., Garcia-Perez, J.S., & Parra-Saldivar, R. (2019). Symbiotic co-culture of Scenedesmus sp. and Azospirillum brasilense on N-deficient media with biomass production for biofuels. Sustainability (Switzerland), 11(3). doi:10.3390/su11030707
Dao, G.H., Wu, G.X., Wang, X.X., Zhang, T.Y., Zhan, X.M., & Hu, H.Y. (2018). Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Research, 33, 345–351. doi:10.1016/j.algal.2018.06.006
Fathy, W.A., AbdElgawad, H., Hashem, A.H., Essawy, E., Tawfik, E., Al-Askar, A. A., & Elsayed, K.N.M. (2023). Exploring Exogenous Indole-3-acetic Acid’s Effect on the Growth and Biochemical Profiles of Synechocystis sp. PAK13 and Chlorella variabilis. Molecules, 28(14). doi:10.3390/molecules28145501
Fuentes, J.L., Garbayo, I., Cuaresma, M., Montero, Z., González-Del-Valle, M., & Vílchez, C. (2016). Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs. MDPI AG. doi:10.3390/md14050100
Gauthier, M.R., Senhorinho, G.N.A., & Scott, J. A. (2020). Microalgae under environmental stress as a source of antioxidants. Algal Research, 52, 102104. doi:10.1016/j.algal.2020.102104
Guillard, R.R.L., & Ryther, J.H. (1962). Studies of Marine Planktonic Diatoms: I. Cyclotella Nana Hustedt and Detonula Confervacea (CLEVE) Gran. Canadian Journal of Microbiology, 8(2), 229–239. doi:10.1139/m62-029
Gultom, S.O. (2018). Mikroalga: Sumber Energi Terbarukan Masa Depan. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 11(1), 95. doi:10.21107/jk.v11i1.3802
Helliwell, K.E., Lawrence, A.D., Holzer, A., Kudahl, U.J., Sasso, S., Kräutler, B., & Smith, A.G. (2016). Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12. Current Biology, 26(8), 999–1008. doi:10.1016/j.cub.2016.02.041
Juneja, A., Ceballos, R M., & Murthy, G.S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies. MDPI AG. doi:10.3390/en6094607
Lin, H., Li, Y., & Hill, R. T. (2022). Microalgal and bacterial auxin biosynthesis: implications for algal biotechnology. Current Opinion in Biotechnology, 73, 300–307. doi:10.1016/j.copbio.2021.09.006
Lirofiatillah, Prabaningtyas, S., Saptasari, M., Aridowi, D., Marisahaniulfah, M., Listyorini, D., & Suyono, E. A. (2020). Effect of differences in the form of photobioreactor prototypes and aeration period on Chlorella sp. Cell growth in co-culture with bacteria. In AIP Conference Proceedings (Vol. 2231). American Institute of Physics Inc. doi:10.1063/5.0002527
Marcarelli, A.M., Fulweiler, R.W., & Scott, J. T. (2022). Nitrogen fixation: A poorly understood process along the freshwater-marine continuum. Limnology And Oceanography Letters, 7(1), 1–10. doi:10.1002/lol2.10220
Mardalisa, M., Zalfiatri, Y., & Rahmayuni, R. (2022). The Effect of Culture Media Types on the Growth of Marine Microalgae Chlorella vulgaris. In IOP Conference Series: Earth and Environmental Science (Vol. 1118). Institute of Physics. doi:10.1088/1755-1315/1118/1/012029
Margono, M., Pranolo, S.H., & Dyartanti, E.R. (2015). Profil Fermentasi pada Produksi Minyak Mikroalga Meggunakan Nannochloropsis oculata Dalam Medium BG-11. EKUILIBIUM, 14(2). doi:10.20961/ekuilibrium.v14i2.2050
Mawadah, I., & Prabaningtyas, S. (2024a). The effect of adding bacteria (nitrogen-fixing bacteria, amylolytic, and phosphate solubilizing bacteria) and different culture media on the growth of the microalgae Chlorella vulgaris. In BIO Web of Conferences (Vol. 117). EDP Sciences. doi:10.1051/bioconf/202411701045
Mawadah, I., & Prabaningtyas, S. (2024b). The effect of adding bacteria (nitrogen-fixing bacteria, amylolytic, and phosphate solubilizing bacteria) and different culture media on the growth of the microalgae Chlorella vulgaris. In BIO Web of Conferences (Vol. 117). EDP Sciences. doi:10.1051/bioconf/202411701045
Milano, J., Ong, H.C., Masjuki, H.H., Chong, W.T., Lam, M.K., Loh, P.K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180–197. doi:10.1016/j.rser.2015.12.150
Noerdjito, D. R. (2019). Interaksi Mikroalga-Bakteri dan Peranannya dalam Produksi Senyawa dalam Kultur Mikroalga. OSEANA, 44(2), 25–34. doi:10.14203/oseana.2019.vol.44no.2.48
Ota, S., Yoshihara, M., Yamazaki, T., Takeshita, T., Hirata, A., Konomi, M., … Kawano, S. (2016). Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Scientific Reports, 6. doi:10.1038/srep25731
Radite, S., & Simanjuntak, B. H. (2020). Penggunaan asam humat sebagai pelapis urea terhadap pertumbuhan dan hasil tanaman pakcoy (Brassica rapa L.) Humic acid application as urea coating on growth and yield of pakcoy (Brassica rapa L.). AGRILAND Jurnal Ilmu Pertanian, 8(1), 72. Retrieved from https://jurnal.uisu.ac.id/index.php/agriland
Rahmawati, B., Ilmi, M., Budiman, A., & Agus Suyono, E. (2020). Screening of IAA Production on the Interaction of Microalgae and Bacteria in the Glagah Consortium. Biosciences, Biotechnology Research Asia, 17(1), 45–52. doi:10.13005/bbra/2808
Rosa, R.M., Machado, M., Vaz, M.G.M.V., Lopes-Santos, R., Nascimento, A G. do, Araújo, W.L., & Nunes-Nesi, A. (2023). Urea as a source of nitrogen and carbon leads to increased photosynthesis rates in Chlamydomonas reinhardtii under mixotrophy. Journal of Biotechnology, 367, 20–30. doi:10.1016/j.jbiotec.2023.03.009
Saputri, D. A. E. (2023). Pengaruh perbedaan suhu terhadap pertumbuhan sel Chlorella Vulgaris yang dikultur dengan bakteri pemfiksasi nitrogen dan penghasil IAA (Indole Acetic Acid). Universitas Negeri Malang, Malang.
Sickerman, N.S., Hu, Y., & Ribbe, M.W. (2017). Nitrogenase Assembly: Strategies and Procedures (Vol. 595, pp. 261–302). Methods in Enzymology. doi:10.1016/bs.mie.2017.07.006
Tandon, P., Jin, Q., & Huang, L. (2017, November 28). A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microbial Cell Factories. BioMed Central Ltd. doi:10.1186/s12934-017-0834-2
Wiratmaja, I.G., & Elisa, E. (2020). Kajian Peluang Pemanfaatan Bioetanol Sebagai Bahan Bakar Utama Kendaraan Masa Depan Di Indonesia. Jurnal Pendidikan Teknik Mesin Undiksha, 8(1), 1–8. doi:10.23887/jptm.v8i1.27298
Wu, X., Yan, Y., Wang, P., Ni, L., Gao, J., & Dai, R. (2015). Effect of urea on growth and microcystins production of Microcystis aeruginosa. Bioresource Technology, 181, 72–77. doi:10.1016/j.biortech.2015.01.035
Yaakob, M.A., Mohamed, R.M S.R., Al-Gheethi, A., Ravishankar, G.A., & Ambati, R.R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells. MDPI. doi:10.3390/cells10020393
Yang, F., Xiang, W., Li, T., & Long, L. (2018). Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Scientific Reports, 8(1). doi:10.1038/s41598-018-34650-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sitoresmi Prabaningtyas, Fairus Zain, Dila Amelia, Raden Roro Ranty Kusumaningayu, Dhiyauddin Aridhowi, Achmad Rodiansyah, Ida Mawadah, Dita Ayu Eka Saputri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
LICENCE: CC-BY-NC
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License





