Mold on Food Product: Comparative Analysis of YOLO Variants for Detecting Rhizopus stolonifer on Bread

Authors

  • Vanny Hani Siwi Faculty of Agriculture, Pembangunan University of Indonesia, Manado, Indonesia
  • Jonathan Wuntu Faculty of Engineering, Sam Ratulangi University, , Jl. Kampus Kleak, Manado, Indonesia
  • Norrytha Lineke Wuntu Faculty of Animal Husbandry, Sam Ratulangi University, Manado, Indonesia
  • Audy Denny Wuntu Department of Chemistry Sam Ratulangi University, Jl. Kampus Kleak, Manado, Indonesia https://orcid.org/0000-0003-1935-8769

DOI:

https://doi.org/10.35799/jis.v25i2.64398

Keywords:

Bread mold detection, Deep learning, Rhizopus stolonifer, YOLO object detection

Abstract

Bread is a staple food that is highly susceptible to fungal contamination, particularly by Rhizopus stolonifer, which poses significant health and food safety risks. Early and accurate detection of mold growth is essential to prevent spoilage and ensure consumer safety. This study presents a comparative analysis of recent YOLO (You Only Look Once) variants, YOLOv8n, YOLOv10n, YOLO11n, and YOLOv12n for detecting Rhizopus stolonifer mold on bread surfaces. This study utilized a mold detection dataset sourced from the Roboflow platform, which contains annotated bread images captured under diverse lighting, texture, and contamination conditions to support robust model training. Each YOLO variant was trained and evaluated under consistent hyperparameters to ensure fairness in comparison. Experimental results indicate that YOLOv8n achieved an mAP50 of 0.472 and mAP50:95 of 0.203; YOLOv10n achieved 0.474 and 0.191, respectively; YOLO11n achieved 0.504 and 0.204; and YOLOv12n achieved 0.503 and 0.224. Among these, YOLO11n demonstrated the highest mAP50 performance, while YOLOv12n attained the best mAP50:95 score, indicating superior detection consistency across varying IoU thresholds. These findings suggest that recent YOLO architectures offer promising potential for real-time and automated detection of Rhizopus stolonifer mold in bread, supporting advancements in intelligent food safety monitoring systems.

References

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. https://arxiv.org/abs/2004.10934v1

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021 - 9th International Conference on Learning Representations. https://arxiv.org/abs/2010.11929v2

Explore Ultralytics YOLOv8 - Ultralytics YOLO Docs. (n.d.). Retrieved October 8, 2025, from https://docs.ultralytics.com/models/yolov8/

gopletzzz. (2025). Bread Mold Detection Dataset. In Roboflow Universe. Roboflow. https://universe.roboflow.com/gopletzzz/bread-mold-detection-55dam

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. https://doi.org/10.1109/CVPR.2016.90

Hosang, J., Benenson, R., & Schiele, B. (2017). Learning non-maximum suppression. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, 6469–6477. https://doi.org/10.1109/CVPR.2017.685

Jegham, N., Koh, C.Y., Abdelatti, M., & Hendawi, A. (2024). YOLO Evolution: A Comprehensive Benchmark and Architectural Review of YOLOv12, YOLO11, and Their Previous Versions. https://arxiv.org/abs/2411.00201v2

Jubayer, F., Soeb, J. A., Mojumder, A. N., Paul, M. K., Barua, P., Kayshar, S., Akter, S. S., Rahman, M., & Islam, A. (2021). Detection of mold on the food surface using YOLOv5. Current Research in Food Science, 4, 724. https://doi.org/10.1016/J.CRFS.2021.10.003

Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., & Yang, J. (2020). Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. Advances in Neural Information Processing Systems, 2020-December. https://arxiv.org/abs/2006.04388v1

Liu, A., Xu, R., Zhang, S., Wang, Y., Hu, B., Ao, X., Li, Q., Li, J., Hu, K., Yang, Y., & Liu, S. (2022). Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Frontiers in Microbiology, 13, 924398. https://doi.org/10.3389/FMICB.2022.924398/XML

Liu, Q., Chen, Q., Liu, H., Du, Y., Jiao, W., Sun, F., & Fu, M. (2024). Rhizopus stolonifer and related control strategies in postharvest fruit: A review. Heliyon, 10(8). https://doi.org/10.1016/J.HELIYON.2024.E29522

Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path Aggregation Network for Instance Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8759–8768. https://doi.org/10.1109/CVPR.2018.00913

Madasamy Raja, G., Pathmanaban, P., Selvaraju, P., & Vanaja, S. (2025). Bread contamination detection using deep learning and thermal imaging. Journal of Food Engineering, 400, 112639. https://doi.org/10.1016/J.JFOODENG.2025.112639

Rahman, M., Islam, R., Hasan, S., Zzaman, W., Rana, M. R., Ahmed, S., Roy, M., Sayem, A., Matin, A., Raposo, A., Zandonadi, R. P., Botelho, R. B. A., & Sunny, A. R. (2022). A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022, Vol. 11, Page 319, 11(3), 319. https://doi.org/10.3390/FOODS11030319

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788. https://doi.org/10.1109/CVPR.2016.91

Ribes, S., Fuentes, A., Talens, P., & Barat, J. M. (2018). Prevention of fungal spoilage in food products using natural compounds: A review. Critical Reviews in Food Science and Nutrition, 58(12), 2002–2016. https://doi.org/10.1080/10408398.2017.1295017

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

Tian, Y., Ye, Q., & Doermann, D. (2025). YOLOv12: Attention-Centric Real-Time Object Detectors. https://doi.org/10.0

Treepong, P., & Theera-Ampornpunt, N. (2023). Early bread mold detection through microscopic images using convolutional neural network. Current Research in Food Science, 7, 100574. https://doi.org/10.1016/J.CRFS.2023.100574

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024). YOLOv10: Real-Time End-to-End Object Detection. NeurIPS, 1–21. http://arxiv.org/abs/2405.14458

Wang, C. Y., Mark Liao, H. Y., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2019). CSPNet: A New Backbone that can Enhance Learning Capability of CNN. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 1571–1580. https://doi.org/10.1109/ CVPRW50498.2020.00203

Zheng, Z., Wang, P., Ren, D., Liu, W., Ye, R., Hu, Q., & Zuo, W. (2020). Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Transactions on Cybernetics, 52(8), 8574–8586. https://doi.org/10.1109/TCYB.2021.3095305

Downloads

Published

2025-10-31

How to Cite

Siwi, V. H., Wuntu, J., Wuntu, N. L., & Wuntu, A. D. (2025). Mold on Food Product: Comparative Analysis of YOLO Variants for Detecting Rhizopus stolonifer on Bread. Jurnal Ilmiah Sains, 25(2), 173–186. https://doi.org/10.35799/jis.v25i2.64398

Issue

Section

Articles