Ketapang Leaves (Terminalia catappa L.) as Lead (Pb) Bioaccumulators
DOI:
https://doi.org/10.35791/jat.v5i2.62266Keywords:
Terminalia catappa L, Lead (Pb), BioaccumulatorAbstract
Study This study aims to determine the ability of the leaf plant Ketapang shade tree (Terminalia catappa L.) to accumulate lead (Pb) in Manado City. Purposive sampling is being conducted at three locations. Pb levels in leaves are determined using the Spectrophotometry Atomic Absorption Spectroscopy (AAS) technique. According to research findings, the leaves of Terminalia catappa L. can be considered a bioaccumulator in Manado City. Because of their propensity to absorb metal lead (Pb), the concentrations of Pb on Jalan Piere Tendean, Malalayang Beach Walk, and District Wori range from 0.22-0.44 mg/kg. The highest Pb content was found on Jalan Piere Tendean, which has a high level of density and is rated as high. Recommended: To do advanced research on Pb content in plants, another potential shade as a bioaccumulator or hyperaccumulator in Manado City.
Keywords: Terminalia catappa L.; Lead (Pb); Bioaccumulator
References
Rafaelle Vinturelle, Taissa da Silva Cabral, Pamella C.O. de Oliveira, Juliana P. Salles, Juliana V. Faria, Guilherme P. Teixeira, Robson X. Faria, Márcia C.C. Veloso, Gilberto A. Romeiro, Evelyze Folly das Chagas. 2024. Slow pyrolysis of Terminalia catappa L. municipal solid waste and the use of the aqueous fraction produced for bovine mastitis control, Biochemistry and Biophysics Reports,Volume 38, 2024, 101704, ISSN 2405-5808, https://doi.org/10.1016/j.bbrep.2024.101704. (https://www.sciencedirect.com/science/article/pii/S2405580824000682)
Suresh Ramanan S, A. Arunachalam, Rinku Singh, Ankit Verdiya. 2025. Tropical almond (Terminalia catappa): A holistic review, Heliyon,Volume 11, Issue 1, 2025,e41115, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e41115. (https://www.sciencedirect.com/science/article/pii/S2405844024171460)
Paweł Świsłowski, Konstantin Vergel, Inga Zinicovscaia, Małgorzata Rajfur, Maria Wacławek. 2022. Mosses as a biomonitor to identify elements released into the air as a result of car workshop activities, Ecological Indicators,Volume 138,2022,108849,ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2022.108849. (https://www.sciencedirect.com/science/article/pii/S1470160X2200320X)
Shritama Mukhopadhyay, Ratna Dutta, Papita Das. 2022. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques, Chemosphere, Volume 251, 2020, 126441, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2020.126441. (https://www.sciencedirect.com/science/article/pii/S0045653520306342)
Natália Dantas de Oliveira, Ana Cristina Silveira Martins, Janaína André Cirino, Larissa Maria Gomes Dutra, Evandro Ferreira da Silva, Yuri Mangueira do Nascimento, Marcelo Sobral da Silva, Marcos dos Santos Lima, Juliano Carlo Rufino Freitas, Vanessa Bordin Viera, Juliana Késsia Barbosa Soares. 2024. Exploring the potential of the tropical almond (Terminalia catappa L.): Analysis of bioactive compounds, morphology and metabolites, Industrial Crops and Products,Volume 221,2024,119378, ISSN 0926-6690, https://doi.org/10.1016/j.indcrop.2024.119378. (https://www.sciencedirect.com/science/article/pii/S0926669024013554).
Kumar, J., Gaur, S., Srivastava, P.K., Mishra, R.K., Prasad, S.M., & Chauhan, D.K. (Eds.). (2022). Heavy Metals in Plants: Physiological to Molecular Approach (1st ed.). CRC Press. Boca Raton. Bioscience, Environment & Agriculture. ISBN 9781003110576 p 396
Chandra, R., Dubey, N.K., & Kumar, V. (2017). Phytoremediation of Environmental Pollutants (1st ed.). CRC Press. Boca Raton. Bioscience, Environment and Agriculture. ISBN 9781315161549 p 524
Sigel, H., & Sigel, R. (Eds.). (2005). Metal Ions In Biological Systems, Volume 44: Biogeochemistry, Availability, and Transport of Metals in the Environment (1st ed.). CRC Press. Boca Raton. Bioscience, Environment & Agriculture, Physical Sciences. ISBN 9780429121166 p 352
Terry, N., & Banuelos, G.S. (Eds.). (2000). Phytoremediation of Contaminated Soil and Water (1st ed.). CRC Press. Boca Raton. Earth Science, Engineering and Technology. ISBN 9780367803148 p 408.
Anjum, N.A., Pereira, M.E., Ahmad, I., Duarte, A.C., Umar, S., & Khan, N.A. (Eds.). (2012). Phytotechnologies: Remediation of Environmental Contaminants (1st ed.). Boca Raton. Environment & Agriculture, Physical Sciences. ISBN 9780429063589 p 617
A.K. Hegazy, M.H. Emam, L. Lovett-Doust, E. Azab, A.A. El-Khatib 2017. Response of duckweed to lead exposure: phytomining, bioindicators and bioremediation, Desalination and Water Treatment, Volume 70, 2017, Pages 227-234, https://doi.org/10.5004/dwt.2017.20545
Tzu-Hao Su, Chin-Sheng Lin, Shiang-Yue Lu, Jiunn-Cheng Lin, Hsiang-Hua Wang, Chiung-Pin Liu. 2022. Effect of air quality improvement by urban parks on mitigating PM2.5 and its associated heavy metals: A mobile-monitoring field study, Journal of Environmental Management,Volume 323, 2022, 116283, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2022.116283. (https://www.sciencedirect.com/science/article/pii/S0301479722018564)
Eisa Solgi, Marziyeh Keramaty, Mousa Solgi. 2020. Biomonitoring of airborne Cu, Pb, and Zn in an urban area employing a broad leaved and a conifer tree species, Journal of Geochemical Exploration,Volume 208,2020,106400,ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2019.106400. (https://www.sciencedirect.com/science/article/pii/S0375674219300299)
Ramon S. Santos, Francis A.C.R.A. Sanches, Roberta G. Leitão, Catarine C.G. Leitão, Davi F. Oliveira, Marcelino J. Anjos, Joaquim T. Assis. 2019. Multielemental analysis in Nerium Oleander L. leaves as a way of assessing the levels of urban air pollution by heavy metals, Applied Radiation and Isotopes,Volume 152,2019,Pages 18-24,ISSN 0969-8043, https://doi.org/10.1016/j.apradiso.2019.06.020. (https://www.sciencedirect.com/science/article/pii/S0969804319302118)
Alexandre Gonzalez, Zohra Benfodda, David Bénimélis, Damien Bourgeois, Jean-Xavier Fontaine, Roland Molinié, Patrick Meffre. 2025. Biomonitoring of elements airborne pollution in European Mediterranean region by two Tillandsia species, Atmospheric Pollution Research, Volume 16, Issue 8, 2025,102576,ISSN 1309-1042, https://doi.org/10.1016/j.apr.2025.102576. (https://www.sciencedirect.com/science/article/pii/S1309104225001783)
Hidayati, N., & Rini, D. S. (2020). Assessment of plants as lead and cadmium accumulators for phytoremediation of contaminated rice field. Biodiversitas, 21(5), 1928–1934. https://doi.org/10.13057/biodiv/d210520
Davis, L. M. M., Hidayati, N., Firdaus, A. M., Talib, C., Rini, D. S., Juhaeti, T., … Gunawan, I. (2023). Uptake and translocation of lead and cadmium in wild-found plant species from Bekasi and Karawang, West Java, for phytoremediation. In IOP Conference Series: Earth and Environmental Science (Vol. 1201). Institute of Physics. https://doi.org/10.1088/1755-1315/1201/1/012070
Chehregani, A., Noori, M., & Yazdi, H. L. (2009). Phytoremediation of heavy-metal-polluted soils: Screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety, 72(5), 1349–1353. https://doi.org/10.1016/j.ecoenv.2009.02.012
Yuan, J., Zhao, X., Cao, X., Wang, G., Guo, Y., Ji, X., … Li, M. (2022). Effects and mechanisms of phosphate solubilizing bacteria on enhancing phytoextraction of lead from contaminated soil by Celosia cristata L. Journal of Cleaner Production, 380. https://doi.org/10.1016/j.jclepro.2022.135013
Abubakar, A., Yusuf, H., Syukri, M., Nasution, R., Yusuf, M., & Idroes, R. (2023). Heavy metals contamination in geothermal medicinal plant extract (Chromolaena odorata Linn). Global Journal of Environmental Science and Management, 9(4), 995–1004. https://doi.org/10.22035/gjesm.2023.04.22
Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research, 22(18), 13772–13799. https://doi.org/10.1007/s11356-015-4881-0
Anand, A. V., Divya, N., & Kotti, P. P. (2015, July 1). An updated review of Terminalia catappa. Pharmacognosy Reviews. Medknow Publications. https://doi.org/10.4103/0973-7847.162103
Hung, H. D., Tien, D. D., Ngoan, N. T., Duong, B. T., Viet, D. Q., Dien, P. G., & Anh, B. K. (2022). Chemical Constituents From The Leaves Of Terminalia Catappa L. (Combretaceae). Vietnam Journal of Science and Technology, 60(4), 625–630. https://doi.org/10.15625/2525-2518/15972
Jadav, J. N., Maind, S. D., & Bhalerao, S. A. (2015). Competitive biosorption of lead (II) ions from aqueous solutions onto Terminalia catappa L. leaves as a cost-effective biosorbent. Octa Journal of Environmental Research, 3(1), 67–79. Retrieved from http://sciencebeingjournal.com/sites/default/files/07-150228_0301.pdf
Uka, U. N., Belford, E. J. D., & Hogarh, J. N. (2019). Roadside air pollution in a tropical city: physiological and biochemical response from trees. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0117-7
Akinnibosun, H. A., Onyekwere, C. C., Ebun-Igbeare, E. O., & Ekevwo, P. O. (2023). Assessment of Air Pollution Using Plant Chlorophyll Concentration Reduction Criterion in Benin City, Edo State. African Scientist, 24(2), 155–162. https://doi.org/10.26538/africanscientist.24.2.20230601
Rahul, M. M. C., & Saraswathi, R. (2023). Airborne dust and associated metals: a link between its impact and sink rate within different roadside plants. Global Nest Journal, 25(4), 23–33. https://doi.org/10.30955/gnj.004656
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tommy Bartholomeus Ogie, Frangky Jessy Paat, Shafira Sri Handayani Fatmona Fatmona

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


















