The Effect Of Coconut Water Concentration For Induction Of Potato Microtubers
DOI:
https://doi.org/10.35791/jat.v6i1.63663Keywords:
Microtuber Induction, Coconut Water, ConcentrationAbstract
Potato (Solanum tuberosum L.) is one of the food crops commonly used as an alternative staple food to rice because it has a high starch and sugar content. The demand for potatoes in Indonesia continues to increase, but its production remains low. One of the factors contributing to this low production is the limited availability of high-quality seed potatoes that do not meet the needs of farmers. This study aims to determine the best concentration of coconut water for potato micotrubers induction. The reseacrh method used a Completely Randomized Design (CRD), with multiple variations of coconut water concentrations, namely P0 = Without Coconut Water, P1 = 10% Coconut Water, P2 = 30% Coconut Water, P3 = 50% Coconut Water. Each treatment was repeated five times, resulting in a total of 20 culture bottles used in the study. Each bottle contained 2 explants, for a total of 40 explants. The result of this study found that application of second treatment (P2) = 30% coconut water significantly affected tuber emergence time, the number of tubers per bottle, and tuber diameter, but had no effect on the weight of the potato microtubers. It is recommended to conduct furthwer research using 30% coconut water concentration for potato microtuber induction with a longer observation time.
Keywords : Microtuber Induction, Coconut Water Concentration
Abstrak
Kentang (Solanum tuberosum L.) merupakan salah satu tanaman pangan yang umum dimanfaatkan sebagai bahan makanan utama alternatif beras karena memiliki kandungan tepung dan gula yang tinggi. Kebutuhan akan kentang di Indonesia terus mengalami peningkatan namun berbanding dengan produksinya yang rendah. Produksi yang rendah ini salah satunya diakibatkan ketersediaan benih kentang berkualitas yang terbatas dan tidak memenuhi kebutuhan benih para petani. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi air kelapa yang baik terhadap induksi umbi mikro kentang. Rancangan penelitian yang digunakan adalah RAL (Rancangan Acak Lengkap) dengan beberapa perlakuan konsentrasi air kelapa, yaitu P0 = Tanpa Air kelapa, P1 = Air kelapa 10%, P2 = Air Kelapa 30%, P3 = Air Kelapa 50%, masing-masing perlakuan diulang 5 kali, sehingga total botol kultur yang digunakan dalam penelitian ini berjumlah 20 botol. Tiap-tiap botol diisi 2 tanaman sehingga terdapat 40 eksplan. Hasil penelitian didapati perlakuan 2 (P2) dengan pemberian konsentrasi air kelapa 30% berpengaruh terhadap waktu muncul umbi, jumlah umbi per botol, dan diameter umbi kecuali bobot umbi mikro tanaman kentang. Disarankan untuk melakukan penelitian lanjutan menggunakan konsentrasi air kelapa 30% untuk induksi umbi mikro kentang dengan waktu pengamatan yang lebih panjang.
Kata Kunci: Pembentukan Umbi Mikro, Konsentrasi Air Kelapa
References
Aksenova N. P., Konstantinova T. N., Golyanovskaya S. A. 1994. Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. Journal of Plant Growth Regulation (1994). https://dx.doi.org/10.1007/BF00196378
Alchanatis V., Peleg K., Ziv M. 1994. Morphological control and mensuration of potato plantlets from tissue cultures for automated micropropagation. Plant Cell, Tissue and Organ Culture (1994) https://dx.doi.org/10.1007/BF00046090
Abu Zeid I. M., Soliman H. I., Metwali E. M. 2022. In vitro evaluation of some high yield potato (Solanum tuberosum L.) cultivars under imposition of salinity at the cellular and organ levels. Saudi Journal of Biological Sciences (2022). https://dx.doi.org/10.1016/j.sjbs.2021.12.040
Apriliani, E., dan P. Chairunnisa. 2024. Induksi Umbi Mikro pada Tanaman Kentang dengan Penambahan ZPT dan Retardan pada Media Pertumbuhan secara in Vitro. Agriculture and Biological Technology, 1(2), 51-57.
Filippova S. V., Eliseeva L. V., Shashkarov L. G. 2019. Ion-exchange substrates as the basis for growing seedlings of potato in tube culture. IOP Conference Series: Earth and Environmental Science (2019). https://dx.doi.org/10.1088/1755-1315/346/1/012056
García-García J. A., Solano-Campos F., Orozco-Rodríguez R. 2019. Effect of two cytokinins and a growth inhibitor on the in vitro tuberization of two genotypes of Solanum tuberosum L. CvS. Atlantic and Alpha. Uniciencia (2019). https://dx.doi.org/10.15359/ru.33-2.1
Sivakumar P., Sasikala K., Kiruba M. 2024. Microtuber Induction and Plant Regeneration of Potato (Solanum tuberosum L.): A Review. International Journal of Plant & Soil Science (2024). doi: 10.9734/ijpss/2024/v36i34412
Choirunnisa, J. C., Wardana R. 2021. Effect of photoperiod and KNO3 concentration on the induction and development of potato (Solanum tuberosum) microtuber in vitro. Cell Biology & development Vol 5 No. 2. https://doi.org/10.13057/cellbioldev/v050203
Donnelly D. J., Coleman W. K., Coleman S. E. 2003. Potato microtuber production and performance: A review American Journal of Potato Research (2003). https://dx.doi.org/10.1007/BF02870209
Doodoh, M. P., W. Tilaar, dan S. Wanget. 2022. Pengaruh Kinetin Pada Pertumbuhan Kecambah Brokoli Hibrida (Brassica oleracea Var. Green Magic) Dan Kandungan Sulforafan Pada Kultur In Vitro. Agri-sosioekonomi, 18(3), 835-842.
Valencia-Lozano E., Herrera-Isidrón L., Cabrera-Ponce J. L. 2022. Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis. International Journal of Molecular Sciences (2022). https://dx.doi.org/10.3390/ijms232213835
Lopez-Delgado H., Scott I. M. 1997. Induction of in vitro tuberization of potato microplants by acetylsalicylic acid. Journal of Plant Physiology (1997). https://dx.doi.org/10.1016/S0176-1617(97)80039-9
Hidayati, A. N., T. Setyorini, dan A. Himawan. 2023. Perbanyakan Dan Pembentukan Umbi Mikro Kentang (Solanum Tuberosum L.) Secara In vitro Pada Modifikasi Komposisi Media MS Dan Sukrosa In vitro Propagation And Microtuber Formation Of Potato (Solanum Tuberosum L.) On Modification Of MS Medium And Sucrose. Jurnal Agrin, 27 (1) : 22–36.
Suttle J. C., Hultstrand J. F. 1994. Role of endogenous abscisic acid in potato microtuber dormancy Plant Physiology (1994). https://dx.doi.org/10.1104/pp.105.3.891
Kumar, V. A., A., P. Shukla, dan K. Joshi. 2018. In-Vitro Microtuber Production In Potato Cultivar Kufri Himalini. Ady Plants Aric Res, 8 (6): 648–653.
Levin R., Alper Y., Watad A. A. 1997. Methods and apparatus for liquid media and semi-automated micropropagation. Acta Horticulturae (1997) https://dx.doi.org/10.17660/actahortic.1997.447.129
Maninggolang,, A., J. S. Polii-Mandang, W. Tilaar. 2018. Pengaruh BAP (Benzyl Amino Purine) Dan Air Kelapa Terhadap Pertumbuhan Tunas Pucuk Dan Kandungan Sulforafan Brokoli (Brassica oleracea L. var. italica Plenck) Secara In-Vitro. Agri-Sosioekonomi, 14(1), 439-450.
Jiménez E., Pérez N., Pérez J. C. 1999. Improved production of potato microtubers using a temporary immersion system. Plant Cell, Tissue and Organ Culture (1999). https://dx.doi.org/10.1023/A:1006312029055
Marpaung, R. G., D. Pasaribu, Y. S. K. Gulo, dan Y. S. K. Gulo. 2019. Pengaruh Ekstrak Kentang Dan Air Kelapa Muda Terhadap Pertumbuhan Planlet Dendrobium Sp Pada Media Vacin Dan Went. Jurnal Agrotekda, 3 (2): 84–92.
Tábori K. M., Dobránszki J., Ferenczy A. 2000. Post-effects of light conditions on dormancy of potato microtubers. Acta Agronomica Hungarica (2000). https://dx.doi.org/10.1556/AAgr.48.2000.2.1
Mohapatra, P. P., dan V. K. Batra. 2017. Tissue Culture Of Potato (Solanum tuberosum L.): A Review. International Journal Of Current Microbiology And Applied Sciences, 6 (4): 489–495.
Leclerc Y., Donnelly D. J., Seabrook J. E. Microtuberization of layered shoots and nodal cuttings of potato: The influence of growth regulators and incubation periods. Plant Cell, Tissue and Organ Culture (1994). https://dx.doi.org/10.1007/BF00043604
Nadila, N. E., N, Herawat, dan W. Warnita. 2020. Pemberian Beberapa `Konsentrasi Coumarin dan Suhu Ruang Inkubasi Terhadap Induksi Umbi Mikro Kentang (Solanum tuberosum L.). Prosiding Webminar Nasional Series Sistem Pertanian Terpadu Dalam Pemberdayaan Petani di Era New Normal, 104-117.
He X., Meng M. 2016. Physiological responses to high exogenous sucrose in tuber induction of potato in vitro. Turkish Journal of Field Crops (2016). https://dx.doi.org/10.17557/tjfc.55137
Sharma S., Chanemougasoundharam A., Pandey S. K. 2004. Carboxylic acids affect induction, development and quality of potato (Solanum tuberosum L.) microtubers grown in vitro from single-node explants. Plant Growth Regulation (2004). https://dx.doi.org/10.1007/s10725-004-5827-6
Sagala, D., H. Wafom Tubur, U. Fatkhul Jannah, dan C. Sinath. 2012. Pengaruh Bap Terhadap Pembentukan Dan Pembesaran Umbi Mikro Kentang Kultivar Granola (The Effect Of Bap Plant Regulator To The Formation And The Development Of Potato’s Micro Tuber). Jurnal Agroqua: Media Informasi Agronomi Dan Budidaya Perairan, 10 (1): 5–12.
Pumisutapon P., Topoonyanont N. 2017. Moderate-abiotic stress increase in vitro tuberization and microtuber growth of potato. Acta Horticulturae (2017). https://dx.doi.org/10.17660/ActaHortic.2017.1155.30
Suharjo, U. K. J., B. G. Murcitro, T. Pamekas, dan Haryuni. 2017. Induksi Umbi Mikro Kentang Secara In vitro Pada Suhu Tinggi Dengan Beberapa Tuber Promoter. Biogenesis: Jurnal Ilmiah Biologi, 5 (1): 61–69.
Das A., Gosal S. S., Dhaliwal H. S. 2000. Induction of mutations for heat tolerance in potato by using in vitro culture and radiation. Euphytica (2000). https://dx.doi.org/10.1023/A:1003965724880
Wiranto, B., dan J. A. T. Da Silva. 2015. Use Of Coconut Water And Fertilizer For In vitro Proliferation And Planlet Production Of Dendrobium ’Gradita 31. In vitro Cellular & Development Biology-Plant, 51 (3): 303–314.
Sadek Hossain M., Mofazzal Hossain M., Dulal Sarkar M. 2017. Varietal performance of potato on induction and development of microtuber in response to sucrose. Annals of Agricultural Sciences (2017). https://dx.doi.org/10.1016/j.aoas.2017.05.002
Zidni, M., A. Pitoyo, dan Solichatun. 2022. Pertumbuhan Stek Tunas Mikro Kentang (Solanum tuberosum L. ‘Granola’) pada Media Murashige dan Skoog dengan Penambahan Ekstrak Kecambah Kacang Hijau dan Sukrosa. Prosiding Seminar Nasiona Biologi Divisi Indonesia, 8(1), 96– 102.
Sembiring et al 2020. Formation of potato micro tubers (Solanum tuberosum L.) by using BAP and coconut water in the in vitro culture IOP Conf. Ser.: Earth Environ. Sci. 425 012072 DOI 10.1088/1755-1315/425/1/012072 https://iopscience.iop.org/article/10.1088/1755-1315/425/1/012072
Deshi K. E, Oko M. O, Nanbol K. K, Satdom S. M 2021. Effect of coconut (Cocos nucifera L.) water on growth and yield of selected potato (Solanum tuberosum L.) varieties in Jos, Plateau State, Nigeria. Australian Journal of Science and Technology Vol. 5 Issue 3 2021 https://www.aujst.com/index.php
Duong Tan Nhut, Nguyen Hoang Nguyen, Dang Thi Thu Thuy, 2006. A novel in vitro hydroponic culture system for potato (Solanum tuberosum L.) microtuber production, Scientia Horticulturae, Volume 110, Issue 3, 2006,Pages 230-234, ISSN 0304-4238, https://doi.org/10.1016/j.scienta.2006.07.027. (https://www.sciencedirect.com/science/article/pii/S0304423806003104)
The Effect of Plant Growth Regulator and Active Charcoal on the Development of Microtubers of Potatoes. 2012. Peng M., Wang X., Li L. 2012. American Journal of Plant Sciences (2012). https://dx.doi.org/10.4236/ajps.2012.311185
Sharma M., singh A. K. 2023. Standardization of protocol for in vitro tuberization in potato (Solanum tuberosum) cultivar Kufri Sindhuri. The Indian Journal of Agricultural Sciences (2023) doi: 10.56093/ijas.v93i1.108377
Gosal S. S., Wani S. H. 2018. Cell and tissue culture approaches in relation to crop improvement. Biotechnologies of Crop Improvement (2018). https://dx.doi.org/10.1007/978-3-319-78283-6_1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tisya A. Wuisan, Edy F. Lengkong, Paula C.H. Supit, Jeane S.M. Raintung, Stella M.T. Tulung, Annatje E.B. Inkiriwang, Diane D. Pioh

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


















