The Role of Understory Plants in Microclimate in Coconut-Based Agroforestry

Authors

  • Euis F.S. Pangemanan Program Studi Kehutanan, Fakultas Pertanian, Universitas Sam Ratulangi
  • Josephus I. Kalangi Sam Ratulangi University
  • Fabiola B. Saroinsong Sam Ratulangi University
  • Semuel P. Ratag Sam Ratulangi University

DOI:

https://doi.org/10.35791/jat.v6i2.64481

Keywords:

coconut agroforestry, microclimate, understory plants

Abstract

The use of land with a coconut-based agroforestry system is currently widely practiced in the South Minahasa region. In this agroforestry system, coconut trees are planted together with other plants on a single plot of land. The diversity of underplanting also plays a role in modifying the microclimate around the coconut trees, which in turn can affect the growth and productivity of the plants. Microclimate is the climatic conditions that occur around plants and is greatly influenced by various factors, including plant diversity. Coconut trees in coconut-based agroforestry systems bring about changes in the microclimate under the canopy and can lower air temperature, reduce radiation, and decrease wind speed under the canopy. This study aims to determine the effect of various types of vegetation on the microclimate in coconut-based agroforestry. The research was conducted in Ongkaw Village using a survey method. Microclimate measurements included solar radiation transmission, air temperature, air humidity, and wind speed at each observation plot. Data on underplant vegetation was observed using a purposive sampling plot method on coconut agroforestry land with different vegetation structures.

The results showed that, compared to monoculture areas, the presence of understory plants significantly reduced air temperature, increased relative humidity, slowed wind speed, and reduced the intensity of light reaching the ground.   Compared to other types of plants, plots with multi-strata fruit plants had the best microclimate conditions; shrub plots showed a moderate effect on microclimate moderation, while more open plots tended to have higher temperatures and lower humidity.

The conclusion of this study is that the selection of understory plants in coconut agroforestry systems greatly influences microclimate conditions. Multi-strata fruit trees have been proven to be the most effective in creating a cooler and more humid microclimate, which can contribute to improved soil health and reduced stress on the main crop

References

Avelino, J., Gagliardi, S., Perfecto, I., Isaac, M. E., Liebig, T., Vandermeer, J., ... & Motisi, N. (2023). Tree effects on coffee leaf rust at field and landscape scales. Plant Disease, 107(2), 247-261

Chen, H., et al. (2023). Vertical humidity gradients in diverse agroforestry systems. Agricultural and Forest Meteorology, 332, 109-122.

Endo, M., et al. (2022). Light modulation and litter decomposition in diverse understory. Soil Biology and Biochemistry, 172, 108-122

Ellison, D., et al. (2022). Evapotranspiration in diverse agroforestry systems. Global Change Biology, 28(5), 1845-1858.

Gusti, M.M., Ratag, S.P. and Pangemanan, E.F., (2022). Ciri-ciri Pola Agrosilvopastura: Studi Kasus Di Desa Sumarayar Kecamatan Langowan Timur. In Cocos (Vol. 14, No. 3).

Hairiah, K., van Noordwijk, M., Sari, R. R., Saputra, D. D., Suprayogo, D., Kurniawan, S., ... & Gusli, S. (2020). Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agriculture, Ecosystems & Environment, 294, 106879.

Ibrahim, Ratag, S.P. and Pangemanan, E.F., (2021). March. Kearifan Lokal dalam Sistem Agroforestri di Kelurahan Kambo Kota Palopo. In Cocos Vol. 3, No. 3.

Ishida, A., et al. (2022). Leaf morphological diversity and light filtering. Functional Ecology, 36(5), 1125-1137.

Karyati.. (2019). Mikroklimatologi Hutan. Mulawarman University PRESS. Samarinda

Kawamura, K., et al. (2022). Spectral light modification by mixed undergrowth. Agricultural and Forest Meteorology, 324, 109-123

Kobayashi, T., et al. (2023). Understory light environment and decomposition processes. Forest Ecology and Management, 529, 120-135

Kumari, R., et al. (2022). Leaf morphological traits and microclimate regulation. Functional Plant Biology, 49(5), 432-445

Lakitan, B. (2002). Dasar-dasr Klimatologi. Raja Grafindo Persada, Jakarta.

Laratmase, Y.C., Ratag, S.P. and Pangemanan, E.F., (2022). Identifikasi Pola Agroforestri Di Desa Togid, Kecamatan Tutuyan, Kabupaten Bolaang Mongondow Timur. In Cocos (Vol. 1, No. 1).

Lin, B. B., Perfecto, I., & Vandermeer, J. (2018). Synergies between agricultural intensification and climate change create new challenges for conservation. Biological Conservation, 227, 1-8.

Meijers, E., Groenewoud, R., de Vries, J., van der Zee, J., Nabuurs, G. J., Vos, M., & Sterck, F. (2025). Canopy cover at the crown-scale best predicts spatial heterogeneity of soil moisture within a temperate Atlantic Forest. Agricultural and Forest Meteorology, 363, 110431.

Meylan, L., Gary, C., Allinne, C., Ortiz, J., Jackson, L., & Rapidel, B. (2017). Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agriculture Ecosystems and Environment, 245, 32–42.

Nakamura, R., et al. (2023). Spectroscopic analysis of understory light quality. Journal of Photochemistry and Photobiology B: Biology, 238, 112-126.

Oping, M.R., Ratag, S. and Pangemanan, E.F., 2023. Agroforestry Patterns In Wanga Village, East Motoling District, South Minahasa Regency. Jurnal Agroekoteknologi Terapan, 4(1), pp.130-139.

Purba, R., Ratag, S. P., & Kalangi, J. I. 2019. Fraksi Radiasi Matahari pada Sistem Agroforestri Cempaka. Journal Cocos, 1 (1):1-6.

Putri, O. R., Karyati & Syafrudin, M., 2018. Iklim Mikro Lahan Revegetasi Pasca Tambang Di PT Adimitra Baratama Nusantara, Provinsi Kalimantan Timur. Ulin-J Hut Trop, 2 (1):26-34

Rao, M.R., Nair, P.K.R. and Ong, C.K., 1997. Biophysical interactions in tropical agroforestry systems. Agroforestry systems, 38, pp.3-50.

Rahman, M. A., et al. (2023). Vertical temperature gradients in agroforestry. Urban Forestry & Urban Greening, 79, 127-140.

Saito, H., et al. (2022). Temporal stability of understory light environment. Agricultural and Forest Meteorology, 315, 108-120.

Singh, R.S., Gupta, J.P. and Rao, A.S. (2002). Impact of micrometeorological parameters on growth and productivity of mung bean under different agro forestry system in arid Rajasthan,J Agrometeorology

Sterck, F. (2022). Future for trees and forests. Wageningen University & Research.

Tanaka, Y., et al. (2023). Stratified light attenuation in complex agroforestry. Agroforestry Systems, 97(3), 421-438

Titdoy, S., Thomas, A., Saroinsong, F.B. and Kainde, R.P., 2014, October. Sistem agroforestri di Desa Tolok Satu Kecamatan Tompaso Kabupaten Minahasa. In Cocos (Vol. 5, No. 2).

Toding, E.M., Ratag, S.P. and Pangemanan, E.F., 2022. Pola Agroforestri Masyarakat di Desa Mopolo Kecamatan Ranoyapo Kabupaten Minahasa Selatan. In Cocos Vol. 14, No. 3

Yamashita, N., et al. (2023). Seasonal dynamics of understory light. Forest Ecology and Management, 541, 121-136.

Zhang, P., et al. (2023). Understory diversity and air humidity. Agricultural and Forest Meteorology, 339, 109-123

Zhou, W., et al. (2023). Cooling effects of understory diversity. Landscape and Urban Planning, 230, 104-118.

Downloads

Published

2025-12-28

How to Cite

Pangemanan, E. F., Kalangi, J. I., Saroinsong, F. B., & Ratag, S. P. (2025). The Role of Understory Plants in Microclimate in Coconut-Based Agroforestry. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 6(2), 337–344. https://doi.org/10.35791/jat.v6i2.64481