Development and Performance Evaluation of a Low-Cost, Energy-Efficient Air Fryer Prototype Using Incandescent Bulb Heating for Oil-Free Food Processing

Authors

  • Jolanda Ch. E. Lamaega Sam Ratulangi University
  • Frangky J. Paat Sam Ratulangi University
  • Sanriomi Sintaro Sintaro Sam Ratulangi University
  • Denny Saroinsong Sam Ratulangi University

DOI:

https://doi.org/10.35791/jat.v7i1.66252

Keywords:

Low-power Air fryer, incandescent bulb heating, oil-free cooking, energy-efficient food processing, sustainable technology

Abstract

Oil-free cooking technologies are increasingly important for promoting healthier diets, reducing dependency on volatile oil markets, and enabling sustainable food processing—particularly in rural and resource-constrained environments. This study presents the design and evaluation of a low-cost air fryer prototype powered by incandescent bulbs (60–150 W), constructed using locally available materials. Thermal performance testing showed that the prototype achieved stable chamber temperatures up to 115 °C, enabling effective oil-free frying of potato slices, banana slices, and chicken nuggets. Frying performance, measured through cooking time, moisture reduction, and sensory evaluation, demonstrated acceptable product quality with significant energy savings: only 25–75 Wh per cycle, roughly one-tenth the energy use of conventional commercial air fryers. The prototype also offers potential as a multifunctional device for dehydration and defrosting, supporting broader postharvest applications in smallholder agritech. These results highlight a promising pathway for low-power, low-cost, and sustainable food processing technologies suitable for deployment in rural communities. Future work will focus on optimizing performance, expanding product capabilities, and validating user acceptance in real-world agritech settings.

Keywords: Low-power Air fryer, incandescent bulb heating, oil-free cooking, energy-efficient food processing, sustainable technology.

References

Alqahtani, N. K., Ghazzawy, H. S., Mathew, R. T., Alkhamis, Y. A., Alngada, R. S., Eissa, M. E. H., Abdelnour, S. A., Ghanem, S. F., Almutairi, L. A., & Eissa, E.-S. H. (2025). Enhancing reproductive capacity in hybrid Red Tilapia (Oreochromis niloticus ×‎ O. mossambicus) via dietary administration of date palm pollen (Phoenix dactylifera L.)‎. Aquaculture Reports, 41, 102670. https://doi.org/https://doi.org/10.1016/j.aqrep.2025.102670

Anumudu, C. K., Onyeaka, H., Ekwueme, C. T., Hart, A., Isaac-Bamgboye, F., & Miri, T. (2024). Advances in the Application of Infrared in Food Processing for Improved Food Quality and Microbial Inactivation. In Foods (Vol. 13, Issue 24). https://doi.org/10.3390/foods13244001

Gasperoni, F., Ieva, F., & Paganoni, A. (2025). ANOVA: Analysis of Variance (pp. 227–263). https://doi.org/10.1007/978-3-031-86670-8_11

Hayelom, M., Kahsay, M. B., Haileslasie, A., & Nydal, O. (2024). An Experimental Comparative Study of Large-Sized Direct Solar Fryers for Injera Baking Applications. Energies, 17, 4949. https://doi.org/10.3390/en17194949

Kumar, V. (2025). Recent Advancements and Innovations in Post-Harvest Handling, Storage, and Technology for Vegetables: A Review. Archives of Current Research International, Volume 25, 161–180. https://doi.org/10.9734/acri/2025/v25i21076

Liangga, G. R. (2022, March 12). Viral, Antri Minyak Goreng yang Langkah Makan Korban! Ibu-ibu Ini Meninggal Terjatuh Ditengah Kerumunan - Teras Gorontalo. https://gorontalo.pikiran-rakyat.com/viral/pr-1963961314/viral-antri-minyak-goreng-yang-langkah-makan-korban-ibu-ibu-ini-meninggal-terjatuh-ditengah-kerumunan

Manyatsi, T. S., Al-Hilphy, A. R., Majzoobi, M., Farahnaky, A., & Gavahian, M. (2023). Effects of infrared heating as an emerging thermal technology on physicochemical properties of foods. Critical Reviews in Food Science and Nutrition, 63(24), 6840–6859. https://doi.org/10.1080/10408398.2022.2043820

Nalendra, A. R. A., Rosalinah, Y., Priadi, A., Subroto, I., Rahayuningsih, R., Lestari, R., Kusumandari, S., Yuliasari, R., Astuti, D., & Latumahina, J. (2021). Statistika seri dasar dengan SPPS.

Nandasiri, R., Semenko, B., Siribaddanage, R., Wijekoon, C., & Suh, M. (2025). Air-Frying Improves the Bioactive Compounds of Thermally Processed Brassica oleracea Vegetables. ACS Food Science & Technology, 5. https://doi.org/10.1021/acsfoodscitech.4c00996

Nunes, C., Alvarenga, V., Sant’Ana, A., Santos, J., & Granato, D. (2015). The Use of Statistical Software in Food Science and Technology: Advantages, Limitations and Misuses. Food Research International, 75. https://doi.org/10.1016/j.foodres.2015.06.011

Pipil, D. M. (2025). Edible Oil Self-Sufficiency in India: A PCA-VECM Approach. The Indian Economic Journal, 1, 226–237. https://doi.org/10.2139/ssrn.5107485

Reuters. (2025, January 8). Indonesia curbs exports of used cooking oil, palm residue to help domestic users | Reuters. https://www.reuters.com/markets/commodities/indonesia-curbs-exports-used-cooking-oil-palm-residue-help-domestic-users-2025-01-08/

Souza, R., Toebe, M., Mello, A., & Bittencourt, K. (2023). Sample size and Shapiro-Wilk test: An analysis for soybean grain yield. European Journal of Agronomy, 142, 126666. https://doi.org/10.1016/j.eja.2022.126666

Téllez-Morales, J. (2023). A Review of the State of the Art of Hot Air Frying Technology. https://doi.org/10.20944/preprints202304.0766.v1

Téllez-Morales, J., Rodríguez-Miranda, J., & Aguilar-Garay, R. (2024). Review of the influence of hot air frying on food quality. Measurement Food, 14, 100153. https://doi.org/10.1016/j.meafoo.2024.100153

Downloads

Published

2026-01-24

How to Cite

Lamaega, J. C. E., Paat, F. J., Sintaro, S. S., & Saroinsong, D. (2026). Development and Performance Evaluation of a Low-Cost, Energy-Efficient Air Fryer Prototype Using Incandescent Bulb Heating for Oil-Free Food Processing. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 7(1), 38–51. https://doi.org/10.35791/jat.v7i1.66252

Most read articles by the same author(s)

1 2 > >>