Pengaruh Integrasi Teknologi Drone dan AI terhadap Kualitas Hasil Panen pada Usaha Agribisnis Jagung
DOI:
https://doi.org/10.35791/agrirud.v7i3.62364Keywords:
Corn agribusiness, Drones, Artificial intelligence, Agricultural technologyAbstract
This research examines the issues encountered by the corn agribusiness harvests sector in sustainably enhancing production and the quality of yields. Traditional agricultural practices frequently exhibit inefficiencies in land surveillance and agronomic decision-making. The amalgamation of drone technology and artificial intelligence (AI) provides novel solutions via real-time land mapping, plant health assessment, and the optimization of water and fertilizer application. This project seeks to examine the effects of integrating drone technology and AI on the quality of corn agribusiness harvests, specifically with enhancements in efficiency and output quality. The employed research methodology is a quantitative approach utilizing a quasi-experimental design. The research sample comprises two groups of corn farming: the control group (without technology) and the treatment group (utilizing drones and AI). We gathered data through field observations, interviews, and documentation, which we then evaluated using an independent t-test. The research findings indicate a substantial disparity in harvest quality between the treatment group and the control group. The utilization of drones and artificial intelligence enhances the consistency of corn size, diminishes crop damage, and augments efficiency in the cultivating process. This research concludes that the amalgamation of drone and AI technology substantially enhances the quality of corn agribusiness harvests. We recommend the broader implementation of this technology in agribusiness operations to boost productivity and sustainability within the agriculture sector.
References
Atser, G. L., Oluoch, M., Gambo, A., Diso, H. Z., Fadairo, O. S., & Jibrin, A. A. (2024). The Commodity Association Traders/Trainers Extension Approach: Smallholder Productivity, Input And Market Linkages In Nigeria. African Journal of Food, Agriculture, Nutrition and Development, 24(3), 25825–25850.
Bendinelli, W. E., Su, C. T., Péra, T. G., & Caixeta Filho, J. V. (2020). What are the main factors that determine post-harvest losses of grains? Sustainable Production and Consumption, 21, 228–238.
Bowman, A. (2025). Supermarketisation, Agro-Industrial Concentration and the Food System’s Shrinking Interstices: Insights From South African Agro-Processing. Global Networks, 25(2).
Cole, R. (2022). Prospects and limitations of ‘Responsible Agricultural Investment’ for governing transboundary agri-food systems in Mekong Southeast Asia: Implications for upland maize in the Lao-Vietnamese borderlands. Environmental Policy and Governance, 32(4), 362–373.
Deribe, Y., & Kassa, E. (2020). Value creation and sorghum-based products: What synergetic actions are needed? Cogent Food and Agriculture, 6(1).
Doi, T., Sakurai, G., & Iizumi, T. (2020). Seasonal Predictability of Four Major Crop Yields Worldwide by a Hybrid System of Dynamical Climate Prediction and Eco-Physiological Crop-Growth Simulation. Frontiers in Sustainable Food Systems, 4, 84.
Dzever, D. D., Nnama, U. C., & Ali, A. (2020). Sustainable Seeds Supply, Public Infrastructure, Research and Development (R&D) Expenditures in Nigeria. In Nutrition, Sustainable Agriculture and Climate Change in Africa: Issues and Innovative Strategies (pp. 65-77). Cham: Springer International Publishing.
Eddens, A. (2024). Seeding empire: American philanthrocapital and the roots of the green revolution in Africa. In Seeding Emp.: Am. Philanthrocapital and the Roots of the Green Revolut. In Afr. (p. 192). University of California Press.
Ibrahim, A. S., Mohsen, S., Selim, I. M., Alroobaea, R., Alsafyani, M., Baqasah, A. M., & Eassa, M. (2025). AI-IoT based smart agriculture pivot for plant diseases detection and treatment. Scientific Reports, 15(1).
Ibrahim, E. S., Nendel, C., Ajayi, A. E., Berg-Mohnicke, M., & Schulz, S. (2025). Simulating and mapping the risks and impact of fall army worm (Spodoptera frugiperda) and white grub (Holotrichia serrata) in maize production outlooks for Nigeria under climate change. Agriculture, Ecosystems & Environment, 385, 109534.
Johnson, A. M., Abdoulaye, T., Ayedun, B., Fulton, J. R., Widmar, N. J. O., Adebowale, A., Bandyopadhyay, R., & Manyong, V. (2020). Willingness to pay of Nigerian poultry producers and feed millers for aflatoxin-safe maize. Agribusiness, 36(2), 299–317.
Kiriveldeniya, K. K. A., & Rosairo, H. S. R. (2020). Value chain actors, farm-gate price and farmer loyalty in strategic vertical coordination in the maize out-grower farming in Sri Lanka. Journal of Agricultural Sciences - Sri Lanka, 15(2), 154–172.
Kovar, J. L., Papanicolaou, A. N., Busch, D. L., Chatterjee, A., Cole, K. J., Dalzell, B. J., Emmett, B. D., Johnson, J. M. F., Malone, R. W., Morrow, A. J., Nowatzke, L. W., O’Brien, P. L., Prueger, J. H., Rogovska, N., Ruis, S. J., Todey, D. P., & Wacha, K. M. (2024). The LTAR Cropland Common Experiment at Upper Mississippi River Basin–Ames. Journal of Environmental Quality, 53(6), 978–988.
Kurniawan, D., Ananda, C. F., Adi Saputra, P. M., & Khusaini, M. (2022). Mapping variables and key actors in corn farming in Dompu district: A development of economic institutional models in the agribusiness sector. In Modeling Economic Growth in Contemporary Indonesia. (pp. 151–169). Emerald Group Publishing Ltd.
Mamonova, N., Wengle, S., & Dankevych, V. (2023). Queen of the fields in wartime: What can Ukrainian corn tell us about the resilience of the global food system? Journal of Peasant Studies, 50(7), 2513–2538.
Medina-Hoyos, A., Narro-León, L. A., & Chávez-Cabrera, A. (2020). Purple corn (Zea mays L.) crop in the Peruvian Highlands: Adaptation and identification of high-yield and high anthocyanin content cultivars. Scientia Agropecuaria, 11(3), 291–299.
Mkpado, M., Ifejirika, C., & Egbunonu, C. (2022). Yield Sensitivity of Some Crops to Climatic Factors and Enterprise Models for Adoption of Maize Breeds in Nigeria. In Handbook of Climate Change Across the Food Supply Chain (pp. 177-192). Cham: Springer International Publishing.
Mulungu, K., Kassie, M., & Tschopp, M. (2025). The role of information and communication technologies-based extension in agriculture: application, opportunities and challenges. Information Technology for Development, 1-30.
Mulwa, R. M., Matofari, J. W., Ogendo, J. O., Arama, P. F., & Bebe, B. O. (2023). Unlocking opportunities in the cassava CARP value chain project in NakurU County, Kenya. In University Engagement with Farming Communities in Africa (pp. 157-170). Routledge.
Osorio-Antonia, J., Bada-Carbajal, L. M., & Rivas-Tovar, L. A. (2020). NAFTA and the United States and Mexico maize belts 1994–2017. Journal of Agribusiness in Developing and Emerging Economies, 10(4), 385–402.
Puche, J. O. C., Bodah, B. W., Salas, K. E. M., Palma, H. H., Theodoro, S. H., Neckel, A., Moreno-Ríos, A. L., Mores, G., Silva, C. C. O. D. A., Dal Moro, L., Cardoso, G. T., & Ramos, C. G. (2024). Utilizing Marble Waste for Soil Acidity Correction in Colombian Caribbean Agriculture: A Sustainability Assessment. Sustainability (Switzerland), 16(22).
Reis, V. U. V., Penido, A. C., Carvalho, E. R., Rocha, D. K., Reis, L. V., & Semolini, P. H. Z. (2022). Vigor of maize seeds and its effects on plant stand establishment, crop development and grain yield. Journal of Seed Science, 44, e202244020.
Rukka, R. M., Salam, M., Arsyad, M., Rukmana, D., Musa, Y., Jamil, M. H., & Tenriawaru, A. N. (2025, March). The performance assessment of the agribusiness system and production subsystem in maize farming: An Empirical finding from Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1471, No. 1, p. 012040). IOP Publishing.
Salatino, A., Prével, A., Caspar, E., & Bue, S. L. (2025). Influence of AI behavior on human moral decisions, agency, and responsibility. Scientific Reports, 15(1).
Thakur, R., Bhanarkar, P., & Thakur, U. P. (2024). Unsupervised/Supervised Algorithms for Multimedia Data in Smart Agriculture. In Supervised and Unsupervised Data Engineering for Multimedia Data (pp. 111–132). Wiley.
Valdés, R. (2024). Sustainable Food Value Chains: Approaches to Transaction Costs in Agro-Alimentary Systems of Developing Countries—A Chile Case Study. Sustainability (Switzerland), 16(10).
Velásquez, M. A. S. (2024). Use of maize (Zea mays) residues in the industry: Bibliographical review. Revista Iberoamericana de Viticultura Agroindustria y Ruralidad, 11(31), 212–229.
Wei, T., Li, X., Zhang, W., Liu, L., & Li, S. (2025). Sustainable options for improving the economic benefit, energy and ecological efficiency of maize-based forage systems in the North China Plain. Energy, 323, 135907.
Widiastuti, D. P., Hatta, M., Aziz, H., Permana, D., Santari, P. T., Rohaeni, E. S., Ahmad, S. N., Bakrie, B., Tan, S. S., & Rakhmani, S. I. W. (2024). Peatlands management for sustainable use on the integration of maize and cattle in a circular agriculture system in West Kalimantan, Indonesia. Heliyon, 10(10).
Yaqot, M., & Al-Kulayb, I. (2024). Optimizing Global Cereal Production: A Multi-Criteria Decision Analysis for Sustainable Agri4F Supply Chains. Proceedings of International Conference on Computers and Industrial Engineering, CIE, 2024-December, 1025–1038.
Zawadzki, F., Martin do Prado, R., Ornaghi, M. G., Carvalho, V. M., Avila, V. A. D., Ramos, T. R., Moletta, J. L., & Nunes do Prado, I. (2021). Replacement of corn by glycerine and vegetal oils (cashew and castor oils) as alternative additives feeds in diets of Purunã bulls finished in feedlot. Livestock Science, 253, 104695.
Zhou, Y., Luo, Y., Bai, B., Cheng, D., & Peng, X. (2024, September). Research on Maize Recognition at Field Parcel Scale Based on Improved U-Net Network. In 2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC) (pp. 1040-1044). IEEE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pandef Rudianto, Raudhotul Jannah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




