Identifikasi Pola Bakteri Aerob dan Uji Sensitivitas Antibiotik di Ruang UGD dan Kamar Operasi RSIA Kirana Manado
DOI:
https://doi.org/10.35790/ecl.v14i1.65796Keywords:
identifikasi pola bakteri aerob; uji sensitivitas antibiotik; ruang UGD; kamar operasiAbstract
Abstract: Healthcare-Associated Infections (HAIs) are infections acquired during healthcare delivery, primarily caused by aerobic bacteria. Emergency rooms and operating rooms pose high HAI risks due to vulnerable patients and invasive procedures. This study aimed to determine aerobic bacterial patterns and antibiotic sensitivity in the emergency room and operating room of RSIA Kirana Manado. This was an observational and cross-sectional. There were 24 samples collected from walls, floors, air, medical equipment and non-medical equipment (14 from emergency room, 10 from operating room). Bacterial identification utilized nutrient agar and MacConkey agar culture, Gram staining, catalase test, coagulase test, and biochemical tests. Antibiotic sensitivity testing employed disc diffusion method on Mueller-Hinton agar against 11 antibiotics. The results showed that emergency room samples yielded 14 colonies on nutrient agar with no MacConkey growth. All were Gram-positive: Bacillus sp. (78.6%), Staphylococcus sp. (14.3%), and Streptococcus sp. (7.1%). Operating room samples produced nine colonies: Bacillus sp. (55.6%) and Staphylococcus sp. (44.4%). High sensitivity was observed for sulphamethoxazole/trimethoprim (90.9-100%), ciprofloxacin (90.9-100%), and meropenem (80-90.9%), while high resistance occurred with aztreonam (100%) and cefepime (54.5-60%). In conclusion, three bacterial genera were identified: Bacillus sp., Staphylococcus sp., and Streptococcus sp., showing high sensitivity to sulphamethoxazole/trimethoprim, ciprofloxacin, and meropenem, but resistance to aztreonam and cefepime.
Keywords: aerobic bacterial pattern identification; antibiotic sensitivity test; emergency room; operating room
Abstrak: Healthcare-Associated Infections (HAIs) merupakan infeksi yang didapat pasien selama perawatan di rumah sakit, terutama disebabkan bakteri aerob. Ruang UGD dan kamar operasi memiliki risiko tinggi HAIs karena pasien rentan dan prosedur invasif. Penelitian inin bertujuan untuk mengetahui pola bakteri aerob dan uji sensitivitas antibiotik di ruang UGD dan kamar operasi RSIA Kirana Manado. Jenis penelitian ialah observasional deskriptif dengan desain potong lintang. Sebanyak 24 sampel dikumpulkan dari dinding, lantai, udara, peralatan medis dan peralatan non-medis (14 dari UGD, 10 dari kamar operasi). Identifikasi bakteri menggunakan kultur Nutrient Agar dan MacConkey Agar, pewarnaan Gram, uji katalase, koagulase, dan biokimia. Uji sensitivitas antibiotik menggunakan metode difusi cakram pada Mueller-Hinton Agar terhadap 11 jenis antibiotik. Hasil penelitian memperlihatkan sampel UGD menghasilkan 14 koloni pada Nutrient Agar tanpa pertumbuhan pada MacConkey. Semua bakteri Gram positif: Bacillus sp. (78,6%), Staphylococcus sp. (14,3%), dan Streptococcus sp. (7,1%). Sampel kamar operasi menghasilkan sembilan koloni: Bacillus sp. (55,6%) dan Staphylococcus sp. (44,4%). Sensitivitas tinggi terhadap sulphamethoxazole/trimethoprim (90,9-100%), ciprofloxacin (90,9-100%), dan meropenem (80-90,9%), namun resistan terhadap aztreonam (100%) dan cefepime (54,5-60%). Simpulan penelitian ini ialah ditemukan tiga genus bakteri (Bacillus sp., Staphylococcus sp., dan Streptococcus sp.) dengan sensitivitas tinggi terhadap sulphamethoxazole/trimethoprim, ciprofloxacin, dan meropenem, namun resistan terhadap aztreonam dan cefepime.
Kata kunci: identifikasi pola bakteri aerob; uji sensitivitas antibiotik; ruang UGD; kamar operasi
References
1. Handa VL, Patel BN, Bhattacharya DA, Kothari RK, Kavathia DG, Vyas BRM. A study of antibiotic resistance pattern of clinical bacterial pathogens isolated from patients in a tertiary care hospital. Front Microbiol. 2024;15:1–11. Doi: https://doi.org/10.3389/fmicb.2024.1383989
2. Yang Q, Zhang M, Tu Z, Sun Y, Zhao B, Cheng Z, et al. Department-specific patterns of bacterial communities and antibiotic resistance in hospital indoor environments. Appl Microbiol Biotechnol. 2024;108(487):1–16. Doi: https://doi.org/10.1007/s00253-024-13326-9
3. Homenta H, Julyadharma J, Susianti H, Noorhamdani N, Santosaningsih D. Molecular epidemiology of clinical carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex isolates in tertiary care hospitals in Java and Sulawesi Islands, Indonesia. Trop Med Infect Dis. 2022;7(10):1–12. Doi: https://doi.org/10.3390/tropicalmed7100277
4. Jima SA, Gerete TB, Hailu FB, Ayane GB, Jatu MG, Hardido TG, et al. Prevalence and associated factors of nosocomial infection among children admitted at Jimma Medical Center, Southwest Ethiopia: a retrospective study. Front Pediatr. 2025;13:1–9. Doi: https://doi.org/10.3389/fped.2025.1485334
5. Hanchi H, Mottawea W, Sebei K, Hammami R. The genus Enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol. 2018;9(1791):1–16. Doi: https://doi.org/10.3389/fmicb.2018.01791
6. Homenta H, Saharman YR, Kuntaman K. Molecular characterization of clinical carbapenem-resistant Acinetobacter baumannii isolates from two tertiary care hospitals in Indonesia (Abstract). Res J Pharm Technol. 2022;15(7):2917–22. A Doi: https://doi.org/10.52711/0974-360X.2022.00486
7. Anggraini D, Santosaningsih D, Saharman YR, Endraswari PD. Distribution of carbapenemase genes among carbapenem-non-susceptible Acinetobacter baumanii blood isolates in Indonesia : a multicenter study. Antibiotics. 2022;11(3):1–13. Doi: https://doi.org/10.3390/antibiotics11030366
8. Homenta H, Esther F, Rares S, Waworuntu OA, Matandung LF, Sandjaya SF, et al. The molecular detection of blaVIM in carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex infections in Indonesia. Res J Pharm Technol. 2024;17(10):5031–5. Doi: https://doi.org/10.52711/0974-360X.2024.00773
9. Maraş G, Sürme Y. Surgical Site Infections: Prevalence, economic burden, and new preventive recommendations. Explor Res Hypothesis Med. 2023;8(4):366–71. Doi: http://dx.doi.org/10.14218/ERHM.2023.00010
10. Shrestha SK, Trotter A, Shrestha PK. Epidemiology and risk factors of healthcare-associated infections in critically ill patients in a tertiary care teaching hospital in Nepal: a prospective cohort study. Infect Dis Res Treat. 2022;15:1–8. Doi: https://doi.org/10.1177/11786337211071120
11. Sandjaya SF, Waworuntu OA, Homenta H. Identifikasi pola bakteri dan uji sensitivitas antibiotik di ruangan Instalasi Gawat Darurat RSU GMIM Pancaran Kasih Manado. e-CliniC. 2024;12(3):376–82. Doi: https://doi.org/10.35790/ecl.v12i3.54050
12. Bali RK. Operating room protocols and infection control. Oral Maxillofac Surg Clin. 2021;173–94. Doi: https://doi.org/10.1007/978-981-15-1346-6_9
13. Global report on infection prevention and control 2024. World Health Organization; 2024. Available from: https://www.who.int/publications/i/item/9789240103986
14. Szabó S, Feier B, Capatina D, Tertis M, Cristea C, Popa A. An overview of healthcare associated infections and their detection methods caused by pathogen bacteria in Romania and Europe. J Clin Med. 2022;11(11):1–29. Doi: https://doi.org/10.3390/jcm11113204
15. Antimicrobial Resistance. World Health Organization. 2023 [cited 2025 Jul 27]. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
16. Jansen SJ, Lopriore E, van der Beek MT, Veldkamp KE, Steggerda SJ, Bekker V. The road to zero nosocomial infections in neonates—a narrative review. Acta Paediatr Int J Paediatr. 2021;110(8):2326–35. Doi: https://doi.org/10.1111/apa.15886
17. Radhi OA, Ali AH, Alqaseer KAH, Shnain WD, Albandar IJ, Nursing NH, et al. Nosocomial Infections associated with caesarean section. Kufa J Nurs Sci. 2022;12(1):87–107. Doi: https://doi.org/10.36321/kjns/2022/120110
18. Waleleng A, Waworuntu OA, Rares FES. Identifikasi pola bakteri dan uji sensitivitas antibiotik di kamar bedah RSU GMIM Pancaran Kasih Manado. Med Scope J. 2024;6(2):296–302. Doi: https://doi.org/10.35790/ msj.v6i2.53545
19. Tindas K, Homenta H, Porotuo J. Pola bakteri aerob yang berpotensi menyebabkan infeksi nosokomial di kamar operasi RSAD Robert Wolter Mongisidi Manado. eBiomedik. 2016;4(2). Doi: https://doi.org/10.35790/ebm.v4i2.14609
20. Sofyan A, Homenta H, Rares F. Pola bakteri aerob yang berpotensi menyebabkan infeksi nosokomial di kamar operasi CITO BLU RSUP Prof. R. D. Kandou Manado. eBiomedik. 2015;3(1):381–5. Doi: https://doi.org/10.35790/ebm.v3i1.7411
21. Sulistiyo A, Suhartono, Dharminto. Studi tentang angka kuman udara di ruang operasi RSUD Tugurejo Semarang. J Kesehat Masy. 2017;5(5):451–61. Doi: https://doi.org/10.14710/jkm.v5i5.19167
22. Crivelli XB, Cundon C, Sanin MS, Bentancor A. The complex and changing genus Bacillus: a diverse bacterial powerhouse for many applications. Bacteria. 2024;3(3):256–70. Doi: https://doi.org/10.3390/bacteria3030017
23. Gao XL, Shao MF, Wang Q, Wang LT, Fang WY, Ouyang F, et al. Airborne microbial communities in the atmospheric environment of urban hospitals in China. J Hazard Mater. 2018;349(July 2017):10–7. Doi: https://doi.org/10.1016/j.jhazmat.2018.01.043
24. Hefzy EM, Radwan TEE, Hozayen BMM, Mahmoud EE, Khalil MAF. Antiseptics and mupirocin resistance in clinical, environmental, and colonizing coagulase negative Staphylococcus isolates. Antimicrob Resist Infect Control. 2023;12(110):1–10. Doi: https://doi.org/10.1186/s13756-023-01310-3
25. França A. The role of coagulase-negative Staphylococci biofilms on late-onset sepsis: current challenges and emerging diagnostics and therapies. Antibiotics. 2023;12(3):1–31. Doi: https://doi.org/10.3390/antibiotics12030554
26. Asante J, Abia ALK, Anokwah D, Hetsa BA, Fatoba DO, Bester LA, et al. Staphylococcus apecies from South Africa. Genes (Basel) [Internet]. 2023;14(1):1–10. Doi: https://doi.org/10.3390/genes14010104
27. Dallolio L, Raggi A, Sanna T, Mazzetti M, Orsi A, Zanni A, et al. Surveillance of environmental and procedural measures of infection control in the operating theatre setting. Int J Environ Res Public Health. 2018;15(1):1–10. Doi: https://doi.org/10.3390/ijerph15010046
28. Whalen K. Lippincott Illustrated Reviews Pharmacology. South Asia: Wolters Kluwer; 2019.
29. Katzung B. Basic & Clinical Pharmacology (14th ed). McGraw-Hill Education; 2018.
30. Magiorakos A, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2011;18(3):268–81. Doi: http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Sania G. H. Hompas, Heriyannis Homenta, Olivia A. Waworuntu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
COPYRIGHT
Authors who publish with this journal agree to the following terms:
Authors hold their copyright and grant this journal the privilege of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that permits others to impart the work with an acknowledgment of the work's origin and initial publication by this journal.
Authors can enter into separate or additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (for example, post it to an institutional repository or publish it in a book), with an acknowledgment of its underlying publication in this journal.
Authors are permitted and encouraged to post their work online (for example, in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).


