VARIABILITY ANALYSIS OF SIGNIFICANT WAVE HEIGHTS AND WIND WAVES IN RIAU ARCHIPELAGO SEA PART ALKI 1
DOI:
https://doi.org/10.35800/jplt.10.3.2022.55019Keywords:
ALKI 1; MJO; MJO phase; Monsoon; Significant wave height; Wind speedAbstract
The Riau Archipelago Sea is part of the Indonesian Archipelago Sea Lane (ALKI) 1, with a very high intensity of crossing ships. Analysis of surface wind speed and significant wave height is the most important for the safety and performance of offshore shipping. This research aims to study wave characteristics and wind speed by identifying the main factors that affect significant wave height and surface wind speed. Dominant factors that affect significant wave height and wind speed are needed to decide on the safest path and the best time before crossing in ALKI-1. Temporal and spatial analysis of the seasonal variability of significant wave height and wind speed using ECMWF data for 18 years. The data used are significant wave height data and wind speed every 6 hours during the period 2000 – 2018. Three observation points are used for temporal analysis, it is found that significant wave height and wind speed are influenced by two main factors, namely MJO and Monsoon. Maximum significant wave height and wind speed that occurs in the SON period for points 3 and the DJF period at points 1 and 2. MJO affects directly from phases one to eight for observation points 1, 2, and 3. The 4, 7, and 8 MJO phases affect the value of wave height and wave speed significantly, and the 1, 2, and 5 MJO phases affect wave height and wind speed weakly.
Keywords: ALKI 1, MJO, MJO phase, Monsoon, Significant wave height, Wind speed.
References
Afriady, A., Alam, T.M., Ismail, M.F.A., 2019. Pemanfaatan Data Angin untuk Karakteristik Gelombang Laut di Perairan Natuna Berdasarkan Data Angin Tahun 2009–2018. Buletin Oseanografi Marina Inpres, 8(2), 55-60. https://doi.org/10.14710/buloma.v8i1.25304
Anggara, P.D., Alam, T.M., Adrianto, D., Pranowo, W.S., 2018, July. The wave characteristics in Natuna Sea and its adjacent for naval operation base purposes. In IOP Conference Series: Earth and Environmental Science, 176(1), 012003). IOP Publishing.
https://doi.org/10.1088/1755- 1315/176/1/012003
Bahtiyar, A.D.R., Hoyyi, A., Yasin, H., 2014. Ordinary Kriging Dalam Estimasi Curah Hujan Di Kota Semarang. Jurnal Gaussian, 3(2), 151-159.
https://doi.org/10.14710/j.gauss.v3i2.5 900
Balbeid, N., Atmadipoera, A.S. , Koropitan, A.F., 2015. Response of Sea Surface Temperature (SST) and Chlorophyll-a on Madden Julian Oscillation (MJO) in Indonesian Seas. Jurnal Ilmu dan Teknologi Kelautan Tropis, 7(2), 8-14. tps://doi.org/10.29244/jitkt.v7i2.1103 5
Fatimah, S. 2019. Pengantar Transportasi. Myria Publisher. 70 hal.
Gottschalck, J., Higgins, W., 2008. Madden Julian oscillation impacts. NOAA Climate Prediction Center. p 179.
Habibie, M.N., Fitria, W., 2019. Kajian indeks variabilitas tinggi gelombang signifikan di Indonesia. Jurnal Segara, 14(3), 159-168.
http://dx.doi.org/10.15578/segara.v1 4i3.6650
Hadi, S., Sugianto, D.N. 2012. Model distribusi kecepatan angin untuk peramalan gelombang dengan menggunakan metode Darbyshire dan SMB di perairan Semarang. Buletin Oseanografi Marina, 1(3), 25-32. https://doi.org/10.14710/buloma.v1i3.6 907
Harris, A., Prakoso, L.Y., Sianturi, D. 2021. Strategi Pertahanan Laut dalam Rangka Ancaman Keamanan di Alur Laut Kepulauan Indonesia
II. Strategi Pertahanan Laut, 5(1), 45-51. https://doi.org/10.33172/spl.v5i1.648
Huang, C.J., Shen, Y., Chen, Y.H., Chen, H.C. 2021. A novel hybrid deep neural network model for short‐ term electricity price forecasting International Journal of Energy Research, 45(2), 2511- 2532. https://doi.org/10.1016/j.egyr.2021.04. 009
Jones, C., Waliser, D.E., Gautier, C. 1998. The influence of the Madden– Julian oscillation on ocean surface heat fluxes and sea surface temperature. Journal of Climate, 11(5),1057-1072. https://doi.org/10.1175/1520- 0442(1998)011<1057:TIOTMJ>2.0. CO;2
Juan, N.P., Valdecantos, V.N. 2022. Review of the application of Artificial Neural Networks in ocean engineering. Ocean Engineering, 259,p.111947. https://doi.org/10.1016/j.oceaneng.202 2.111947
Jumarang, M.I.,2015, Studi Variabilitas Tinggi dan Periode Gelombang Laut Signifikan di Selat Karimata. POSITRON, 5(1). https://doi.org/10.26418/POSITRON. V5I1.9737
Khetarpal, P., Tripathi, M.M, 2020. A critical and comprehensive review on power quality disturbance detection and classification. Sustainable Computing: Informatics and Systems, 28, p.100417. https://doi.org/10.3390/s21113910
Kolawole, E.S., Ali, W.H., Cofie, P., Fuller, J., Tolliver, C., Obiomon, P. 2015. Design and Implementation of low- pass, high-pass and band-pass finite impulse response (FIR) filters using FPGA. Circuits and Systems, 6(02), 23-30. http://dx.doi.org/10.4236/cs.2015.62 004?
Kurniawan, R., Khotimah, M.K. 2016. Ocean wave characteristics in Indonesian Waters for sea transportation safety and planning. IPTEK The Journal for Technology and Science, 26(1). http://dx.doi.org/10.12962/j20882033.v26i1.767
Kusumastanto, T., 2021. 7.9 Arah Kebijakan dan Strategi Pembangunan Indonesia sebagai Negara Maritim. Pengembangan Perikanan, Kelautan, dan Maritimuntuk Kesejahteraan Rakyat Volume II, p.741.
Listiyono, Y., Prakoso, L.Y. and Sianturi, D., 2021. Strategi Pertahanan Laut dalam Pengamanan Alur Laut Kepulauan Indonesia untuk Mewujudkan Keamanan Maritim dan Mempertahankan Kedaulatan Indonesia. Strategi Pertahanan Laut, 5(3), 35-40. https://doi.org/10.33172/spl.v5i3.642
Lokhande, S.F., Oling, G.W. and Pedraza, J.F., 2017. Linear response of entanglement entropy from holography. Journal of High Energy Physics, 2017(10), 33-40. https://doi.org/10.1007/JHEP10(201 7)104
Madden, R.A. Julian, P.R., 1971. Detection of a 40–50 day oscillation in the zonal wind in the tr, opical Pacific. Journal of Atmospheric Sciences, 28(5), 702-708. https://doi.org/10.1175/1520- 0469(1971)028<0702:DOADOI>2.0. CO;2
Madden, R. A., Julian, P. R. 1972.
Description of global-scalecirculation cells in the tropics with a 40–50 day period. Journal of Atmospheric Sciences, 29(6), 1109-1123. https://doi.org/10.1175/1520- 0469(1972)029<1109:DOGSCC>2.0.CO;2
Madden, R. A., Julian, P. R. 1994. Observations of the 40–50-day tropical oscillation - A review. Monthly weather review, 122(5), pp.814-837. http://dx.doi.org/10.1175/1520- 0493(1994)122<0814:OOTDTO>2.0. CO;2
Marelsa, N.F., Oktaviandra, Y. 2019. Analisis Karakteristik Gelombang Laut Menggunakan Software Windwave-12 (Studi Kasus: Kepulauan Mentawai). OSEANA, 44(2), 10-24. https://doi.org/10.14203/oseana.201 9.Vol.44No.2.23
Muliati, Y., Tawekal, R.L., Wurjanto, A., Kelvin, J. And Pranowo, W.S., 2019. Wind Wave Modeling In Natuna Sea: A Comparison Among SWAN, SEAFINE, And Era-Interim. Geomate Journal, 16(54), 176-184.https://geomatejournal.com/geomate/article/view/2666
Oliver, J.E. 2005. Encyclopedia of World Climatology. Berlin, Heidelberg, New York: Springer Science & Business Media. p 234. https://doi.org/10.21660/2019.54.932 72
Rozi, M.T.A., Ariani, B., Wahyudi, D. 2021. Analisis numerik pengaruh kecepatan terhadap seakeeping kapal patroli pada daerah pelayaran sea state 7. ALE Proceeding, 4, 13-17. https://doi.org/10.30598/ale.4.2021.1 3-17
Sahoo, S.K., Katlamudi, M., Barman, C., Lakshmi, G.U. 2020. Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert Huang Transform. Journal of Environmental Radioactivity, 222, p.106353.https://doi.org/10.1016/j.jenvrad.202 0.106353
Saputra, S., Ngii, E., Chaerul, M., Suseno, D.N., Sinambela, M., Suseno, D.A.N., Saad, M., Yesica, R., Devianto, L.A. 2020. Pengelolaan Wilayah Pesisir yang Terpadu untuk Ketahanan Nasional. Yayasan Kita Menulis.
Siregar, D.C., Ardah, V.P., Navitri, A.M. 2019. Analisis Kondisi Atmosfer Terkait Siklon Tropis Pabuk serta Pengaruhnya terhadap Tinggi Gelombang di perairan Kepulauan Riau. Tunas Geografi, 8(2), 111- 122. https://doi.org/10.56064/jps.v24i1.67 6
Syafril, K.S., Sujarwanto, S. 2015. Pengembangan Pelayaran Perintis pada Perintis Pulau-Pulau Terisolir di Kepulauan Riau. Jurnal Penelitian Transportasi Laut, 17(2), pp.43-53. https://doi.org/10.25104/transla.v17i 2.1411
Usman, F., Tinungki, G.M., Herdiani, E.T. 2022. Model Semivariogram dalam Menaksir Sebaran Kadar Ni Menggunakan Metode Ordinary Kriging (Studi Kasus Endapan Nikel Laterit di PT Vale Indonesia Tbk). SPECTA Journal of Technology, 6(1), pp.55-67. https://doi.org/10.35718/specta.v6i1. 697
Wang, H., Zhang, Y.M., Mao, J.X. 2022. Sparse Gaussian process regression for multi-step ahead forecasting of wind gusts combining numerical weather predictions and on-site measurements. Journal of Wind Engineering and Industrial Aerodynamics, 220, p.104873. https://doi.org/10.1016/j.jweia.2021.1 04873 WMO. 2001. Guide to Wave Analysis and Forecasting. WMO-no. 702.
Wyrtki, K. 1961. Physical oceanography of the Southeast Asian waters (Vol. 2). University of California, Scripps Institution of Oceanography. https://escholarship.org/uc/item/49n9 x3t4
Zeiler, A., Faltermeier, R., Tomé, A.M., Keck, I.R., Puntonet, C., Brawanski, A., Lang, E.W. 2013. Sliding empirical mode decomposition-brain status data analysis and modeling. In Advances in Intelligent Signal Processing and Data Mining (pp. 311-349). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642- 28696-4_12
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.