KEMAMPUAN MENGHAMBAT DARI PEPTIDA SIKLIK YANG DIHASILKAN Prochloron didemni TERHADAP RESEPTOR KANKER KOLOREKTAL DAN PENYAKIT VIRUS DENGAN PENDEKATAN ANALISIS IN SILICO

Authors

DOI:

https://doi.org/10.35800/jplt.12.2.2024.57696

Keywords:

cyclic peptides, Prochloron didemni, in silico, anticancer, antivirus

Abstract

Mikroba endosimbion pada golongan Tunikata dari kelas Ascidiacea sudah ditemukan di Pesisir Malalayang, Teluk Manado. Prochloron didemni sebagai salah satu spesies mikroba fotosimbion pada ascidia dilaporkan menghasilkan berbagai peptida siklik seperti patelamida A, B, C, D, E, F, G dan H, serta ulitiasiklamida. Sebagai bagian dari eksplorasi potensi molekuler mikroba endosimbion tersebut, telah dilakukan analisis in silico untuk prediksi awal kemampuan hambat senyawa-senyawa peptida siklik tersebut terhadap reseptor-reseptor pada kanker kolorektal dan virus dengue dengan menggunakan perangkat lunak AutoDock Vina. Afinitas pengikatan molekul ligan terhadap reseptor yang ditunjukkan dengan nilai ΔG.   Besaran nilai ΔG terkecil diperoleh dari hasil penambatan patelamida A terhadap reseptor virus dengue (ΔG = -14,84), jelas mengindikasikan betapa efektifnya senyawa ini dapat menghambat virus tersebut. Kemampuan ulitiasiklamida juga ternyata sama kuatnya dalam menghambat kedua reseptor kanker kolorektal (ΔG = -14,1 dan -14,42), setara dengan obat, irinotecan. Kemampuan antikanker dan antivirus juga dimiliki oleh senyawa-senyawa patelamida lainnya, sehingga dapat disimpulkan peptida siklik yang dihasilkan oleh mikroba endosimbion P. didemni mempunyai peluang untuk dikembangkan sebagai obat antikanker dan antivirus. Tentu saja, dalam hal ini perlu dilakukan uji-uji  klinik standar ke depan.

Kata kunci: peptida siklik, Prochloron didemni, in silico, antikanker, antivirus

References

Barzkar, Tamadoni Jahromi, Poorsaheli, Vianello. 2019. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Marine Drugs, 17(8), 464. https://doi.org/10.3390/md17080464.

Baur, P., Kühl, M., Comba, P., Behrendt, L. 2022. Possible Functional Roles of Patellamides in the Ascidian-Prochloron Symbiosis. Marine Drugs, 20(2), 119. https://doi.org/10.3390/md20020119.

Chai, Y., Liu, J.-L., Zhang, S., Li, N., Xu, D.-Q., Liu, W.-J., Fu, R.-J., Tang, Y.-P. 2024. The effective combination therapies with irinotecan for colorectal cancer. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1356708.

Donia, M. S., Hathaway, B. J., Sudek, S., Haygood, M. G., Rosovitz, M. J., Ravel, J., Schmidt, E. W. 2006. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nature Chemical Biology, 2(12), 729–735. https://doi.org/10.1038/nchembio829.

Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., Liu, S.-Q. 2016. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144.

Freo, U., Ruocco, C., Valerio, A., Scagnol, I., Nisoli, E. 2021. Paracetamol: A Review of Guideline Recommendations. Journal of Clinical Medicine, 10(15), 3420. https://doi.org/10.3390/jcm10153420

McDonald, L. A., Ireland, C. M. 1992. Patellamide E: a new cyclic peptide from the ascidian Lissoclinum patella. Journal of Natural Products, 55(3),376–379. https://doi.org/10.1021/np50081a016.

Rumengan, I. 2024. Potensi Molekuler Mikroba Fotosimbion: Prochloron didemni pada Ascidia (T. Pangemanan, Ed.). Unsrat Press.

Rumengan, I. F. M., Kubelaborbir, T. M., Tallei, T. E. 2020. Data on the cultivation of Prochloron sp. at Barzkar, Tamadoni Jahromi, Poorsaheli, Vianello. 2019. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Marine Drugs, 17(8), 464. https://doi.org/10.3390/md17080464

Baur, P., Kühl, M., Comba, P., Behrendt, L. 2022. Possible Functional Roles of Patellamides in the Ascidian-Prochloron Symbiosis. Marine Drugs, 20(2), 119. https://doi.org/10.3390/md20020119

Chai, Y., Liu, J.-L., Zhang, S., Li, N., Xu, D.-Q., Liu, W.-J., Fu, R.-J., Tang, Y.-P. 2024. The effective combination therapies with irinotecan for colorectal cancer. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1356708

Donia, M. S., Hathaway, B. J., Sudek, S., Haygood, M. G., Rosovitz, M. J., Ravel, J., Schmidt, E. W. 2006. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nature Chemical Biology, 2(12), 729–735. https://doi.org/10.1038/nchembio829

Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., Liu, S.-Q. 2016. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144

Freo, U., Ruocco, C., Valerio, A., Scagnol, I., Nisoli, E. 2021. Paracetamol: A Review of Guideline Recommendations. Journal of Clinical Medicine, 10(15), 3420. https://doi.org/10.3390/jcm10153420

McDonald, L. A., Ireland, C. M. 1992. Patellamide E: a new cyclic peptide from the ascidian Lissoclinum patella. Journal of Natural Products, 55(3),376–379. https://doi.org/10.1021/np50081a016

Rumengan, I. 2024. Potensi Molekuler Mikroba Fotosimbion: Prochloron didemni pada Ascidia (T. Pangemanan, Ed.). Unsrat Press.

Rumengan, I. F. M., Kubelaborbir, T. M., Tallei, T. E. 2020. Data on the cultivation of Prochloron sp. at different salinity levels. Data in Brief, 29, 105241. https://doi.org/10.1016/j.dib.2020.105241

Rumengan, I. F. M., Roring, V. I. Y., Haedar, J. R., Siby, M. S., Luntungan, A. H., Kolondam, B. J., Uria, A. R., Wakimoto, T. 2021. Ascidian-associated photosymbionts from Manado, Indonesia: secondary metabolites, bioactivity simulation, and biosynthetic insight. Symbiosis, 84(1), 71–82. https://doi.org/10.1007/s13199-021-00766-4

Seeliger, D., de Groot, B. L. 2010. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of computer-aided molecular design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6

Schmidt, E. W., Nelson, J. T., Rasko, D. A., Sudek, S., Eisen, J. A., Haygood, M. G., Ravel, J. 2005. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proceedings of the National Academy of Sciences, 102(20), 7315–7320. https://doi.org/10.1073/pnas.0501424102

World Health Organization. 2023. Colorectal cancer. https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer#:~:text=Colon%20cancer%20is%20the%20second,and%20mortality%20rates%20were%20observed.

World Health Organization (WHO). 2022. Dengue and severe dengue. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

Zannah, S. J., Murti, I. S., Sulistiawati, S. 2021. Hubungan Usia dengan Stadium Saat Diagnosis Penderita Kanker Kolorektal di RSUD Abdul Wahab Sjahranie Samarinda. Jurnal Sains Dan Kesehatan, 3(5), 701–705. https://doi.org/10.25026/jsk.v3i5.629

Downloads

Published

2024-06-10

How to Cite

Rumengan, I., Goei, A., Lintang, R., Sinjal, C., & Pangemanan, T. (2024). KEMAMPUAN MENGHAMBAT DARI PEPTIDA SIKLIK YANG DIHASILKAN Prochloron didemni TERHADAP RESEPTOR KANKER KOLOREKTAL DAN PENYAKIT VIRUS DENGAN PENDEKATAN ANALISIS IN SILICO. JURNAL PESISIR DAN LAUT TROPIS, 12(2), 82–88. https://doi.org/10.35800/jplt.12.2.2024.57696