High Wave Events in The Java Sea to Support Maritime Transportation Safety
DOI:
https://doi.org/10.35800/jplt.13.2.2025.61485Keywords:
Java sea,;high wave; wind speed; numerical model; SOLASAbstract
The Java Sea plays a strategic role in supporting maritime transportation and trade in Indonesia, particularly as a key connector between Java Island and surrounding regions. However, the high intensity of maritime activity in this area is accompanied by a significant risk of maritime accidents, often triggered by high waves and extreme weather conditions. This study aims to analyze the characteristics of high wave events in the Java Sea to support maritime safety and disaster risk mitigation, in accordance with the SOLAS (Safety of Life at Sea) international standards. The analysis utilizes numerical wave model data from Wavewatch III and wind speed data from the Semarang Maritime Meteorological Station for the period of 2004–2023. The results reveal a bimodal annual pattern, with two peaks and two troughs in both wave height and wind speed cycles. Monthly occurrences of high wave events are most frequent in January and August. Annual trend analysis shows an increase of 1–2 events per year for waves with heights of 1.25–1.5 meters, and 1–3 events per year for waves of 1.5–2.5 meters. Meanwhile, waves exceeding 2.5 meters exhibit either a constant trend or statistically insignificant changes. These findings are expected to contribute to the development of early warning systems and policy frameworks aimed at enhancing maritime safety in the Java Sea region.
Keywords: Java sea, high wave, wind speed, numerical model, SOLAS
ABSTRAK
Laut Jawa memiliki peran strategis dalam mendukung pelayaran dan perdagangan laut di Indonesia, khususnya sebagai penghubung utama Pulau Jawa dengan wilayah sekitarnya. Namun, tingginya intensitas aktivitas maritim di kawasan ini juga disertai dengan tingginya risiko kecelakaan laut, yang salah satunya dipicu oleh kondisi gelombang tinggi dan cuaca ekstrem. Penelitian ini bertujuan untuk menganalisis karakteristik kejadian gelombang tinggi di Laut Jawa sebagai upaya mendukung keselamatan pelayaran dan mitigasi bencana maritim, sejalan dengan standar internasional SOLAS (Safety Of Life At Sea). Analisis dilakukan menggunakan data model numerik Wavewatch III serta data kecepatan angin dari Stasiun Meteorologi Maritim Semarang selama periode 2004–2023. Hasil menunjukkan adanya pola dua puncak maksimum dan dua minimum dalam siklus tahunan tinggi gelombang dan kecepatan angin. Kejadian gelombang tinggi bulanan tertinggi terjadi pada Januari dan Agustus. Tren tahunan memperlihatkan peningkatan kejadian gelombang dengan ketinggian 1,25–1,5 m sebanyak 1–2 kejadian per tahun, serta gelombang 1,5–2,5 m sebanyak 1–3 kejadian per tahun. Sementara itu, gelombang lebih dari 2,5 m menunjukkan tren yang cenderung konstan atau tidak signifikan secara statistik. Temuan ini diharapkan dapat menjadi dasar dalam pengembangan sistem peringatan dini serta kebijakan keselamatan pelayaran di wilayah Laut Jawa.
Kata kunci: laut Jawa, gelombang tinggi, kecepatan angin, model numerik, SOLAS
References
Akpınar, A., Bingölbali, B. 2016. Long-term Variations of Wind and Wave Conditions in the Coastal Regions of the Black Sea. Natural Hazards, 84(1), 69–92. https://doi.org/10.1007/s11069-016-2407-9.
Amarouche, K., Akpınar, A., Rybalko, A., Myslenkov, S. 2023. Assessment of SWAN and WAVEWATCH-III Models Regarding the Directional Wave Spectra Estimates based on Eastern Black Sea Measurements. Ocean Engineering, 272, 113944. https://doi.org/10.1016/j.oceaneng.2023.113944.
BMKG. 2019. Peraturan Badan Meteorologi, Klimatologi, dan Geoofisika No. 10 Tahun 2019 tentang Pelayanan Informasi Meteorologi Maritim. Badan Meteorologi Klimatologi dan Geofisika.
BMKG. 2024. Saran Keselamatan Berlayar. https://maritim.bmkg.go.id/info/37/Saran-Keselamatan-Berlayar.
Dick, H., Houben, V. J. H., Lindblad, J. T., Thee, K. W. 2002. Emergence of a National Economy: An Economic History of Indonesia, 1800-2000. University of Hawaii Press.
Efendi, A. N., Geonova, M. F., Widodo, P., Saragih, H. J. R., Suwarno, P., Mamahit, D. A., Trismadi. 2023. Karakteristik Gelombang Laut Indoneisa untuk Mendukung Kegiatan Laut dan Keamanan Maritim. G-Tech: Jurnal Teknologi Terapan, 7(2), 346–357. https://doi.org/10.33379/gtech.v7i2.1989.
Efendi, U., Ismanto, A., Rochaddi, B., Putra, S.M.B. 2024. Wave Characteristics in the Northern Waters of Central Java Based on the Wavewatch III Numerical Model. Jurnal Kelautan Tropis, 27(3),525–533. https://doi.org/10.14710/jkt.v27i3.24850.
Goda, Y. 2010. Random Seas and Design of Maritime Structures. World Scientific Publishing.
Gon, C. J., MacMahan, J. H., Thornton, E. B., Denny, M. 2020. Wave Dissipation by Bottom Friction on the Inner Shelf of a Rocky Shore. Journal of Geophysical Research: Oceans, 125(10). https://doi.org/10.1029/2019JC015963.
Guillou, N. 2014. Wave-energy dissipation by bottom friction in the English Channel. Ocean Engineering, 82, 42–51. https://doi.org/10.1016/j.oceaneng.2014.02.029.
Hai, H. N. T., Bao, N. N., Truong, S. N., Van, T. N. 2024. Characteristics the Living, Working Conditions, and Nutrition of Seafarers Working on Transoceanic Ships: A Cross-sectional Study. Journal of Marine Medical Society, 26(3), 404–409. https://doi.org/10.4103/jmms.jmms_152_23.
Harahap, A., Khalfianur, W., Niati, C. R. 2017. Pengaruh Gelombang Laut terhadap Hasil Tangkapan Nelayan di Kuala Langsa. Samudra Akuatika, 1(2), 21–25.
Haryanto, Y. D., Riama, N. F., Purnama, D. R., Pradita, N., Ismah, S. F., Suryo, A. W., Fadli, M., Hananto, N. D., Li, S., Susanto, R. D. 2021. Effect of Monsoon Phenomenon on Sea Surface Temperatures in Indonesian Throughflow Region and Southeast Indian Ocean. Journal of Southwest Jiaotong University, 56(6), 914–923. https://doi.org/10.35741/issn.0258-2724.56.6.80.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N. 2023. ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47.
Holthuijsen, L. H. 2010. Waves in Oceanic and Coastal Waters. Cambridge University Press. J. A. Putnam, J. W. J. 1949. The Dissipation of Wave Energy by Bottom Friction. Eos, Transactions American Geophysical Union, 30(1), 67–74. https://doi.org/10.1029/TR030i001p00067.
Kazeminezhad, M. H., Ghavanini, F. A. 2023. Operational Wave Forecasting for Extreme Conditions in the Arabian Sea – A comparison with Buoy and Satellite Data. Ocean Engineering, 275, 114152. https://doi.org/10.1016/j.oceaneng.2023.114152.
Kessali, N., Bouhamadouche, M., Hemdane, Y. 2023. Near-shore and Regional Validation of the WAVEWATCH III and SWAN Wave Models through In situ and Satellite Observations in the Barcelona Bay and Algerian Coast. Russian Meteorology and Hydrology, 48(3), 267–279. https://doi.org/10.3103/S1068373923030093.
Kurniawan, R., Habibie, M. N., Permana, D. S. 2012. Kajian Daerah Rawan Gelombang Tinggi di Perairan Indonesia. Jurnal Meteorologi dan Geofisika, 13(3). https://doi.org/10.31172/jmg.v13i3.135.
Kurniawan, R., Habibie, M. N., Suratno. 2011. Variasi Bulanan Gelombang Laut di Indonesia. Jurnal Meteorologi dan Geofisika, 12(3), 221–232.
Kurniawan, R., Harsa, H., Ramdhani, A., Fitria, W., Rahmawati, D., Habibie, M. N., Hutapea, T. D. 2021. Evaluating Skill of BMKG Wave Model Forecast (Wavewatch-3) with Observation Data in Indian Ocean (5 – 31 December 2017). IOP Conference Series: Earth and Environmental Science, 893(1), 012058. https://doi.org/10.1088/1755-1315/893/1/012058.
Kurniawan, R., Khotimah, M. K. 2016. Ocean Wave Characteristics in Indonesian Waters for Sea Transportation Safety and Planning. IPTEK The Journal for Technology and Science, 26(1). https://doi.org/10.12962/j20882033.v26i1.767.
Laloue, A., Ghantous, M., Faugère, Y., Dalphinet, A., Aouf, L. 2024. Statistical Analysis of Global Ocean Significant Wave Heights from Satellite Altimetry Over The Past 2 Decades. https://doi.org/10.5194/sp-4-osr8-6-2024.
Lobeto, H., Menendez, M., Losada, I. J. 2021. Future Behavior of Wind Wave Extremes Due to Climate Change. Scientific Reports, 11(1), 7869. https://doi.org/10.1038/s41598-021-86524-4.
Ludji, J. F., Koehuan, V. A. 2014. Analisis Efisiensi Sistem Osilator Kolom Air sebagai Pembangkit Daya Tenaga Gelombang Laut. LONTAR Jurnal Teknik Mesin Undana (LJTMU ), 1(2), 18–25.
Ma’rufatin, A., Yananto, A., Pandoe, W. W. 2024. Karakteristik Angin Wilayah Pesisir Utara Pulau Jawa Berdasarkan Variabilitas Monsun. Jurnal Teknologi Lingkungan, 25(1), 20–30.
Meng, W., Li, S., Wang, X., Jiang, H. 2023. Wind-Sea and Swell Separation of 1D Wave Spectrum by Deep Learning. Ocean Engineering, 270, 113672. https://doi.org/10.1016/j.oceaneng.2023.113672.
Moegni, N., Rizki, A., Prihantono, G. 2014. Adaptasi Nelayan Perikanan Laut Tangkap dalam Menghadapi Perubahan Iklim. Jurnal Ekonomi & Studi Pembangunan, 15(2), 182–189.
Muraleedharan, G., .Rao, A. ., Sinha, M. 2007. Extreme Wave Height Prediction and Validation for a Cyclonic Condition during Southwest Monsoon. 3rd International Conference on Solar Radiation and Day Lighting, 1–10.
Musić, S., Nicković, S. 2008. 44-year Wave Hindcast for the Eastern Mediterranean. Coastal Engineering, 55(11), 872–880. https://doi.org/10.1016/j.coastaleng.2008.02.024.
Ningsih, N. S., Azhari, A., Al-Khan, T. M. 2023. Wave Climate Characteristics and Effects of Tropical Cyclones on High Wave Occurrences in Indonesian Waters: Strengthening Sea Transportation Safety Management. Ocean & Coastal Management, 243, 106738. https://doi.org/10.1016/j.ocecoaman.2023.106738.
Nugroho, D., Yulihastin, E., Risandi, J. 2022. Ocean Surface Wave Characteristic in the Java Sea based on Global Reanalysis Data. 060004. https://doi.org/10.1063/5.0108243.
Patriana, R., Satria, A. 2013. Pola Adaptasi Nelayan terhadap Perubahan Iklim: Studi Kasus Nelayan Dusun Ciawitali, Desa Pamotan, Kecamatan Kalipucang, Kabupaten Ciamis, Jawa Barat. Jurnal Sosial Ekonomi Kelautan dan Perikanan, 8(1), 11–23.
Pinardi, N., Cavaleri, L., Coppini, G., De Mey, P., Fratianni, C., Huthnance, J., Lermusiaux, P. F. J., Navarra, A., Preller, R., Tibaldi, S. 2017. From Weather to Ocean Predictions: An Historical Viewpoint. Journal of Marine Research, 75(3), 103–159. https://doi.org/10.1357/002224017821836789.
Purwanto, P., Sugianto, D. N., Zainuri, M., Permatasari, G., Atmodjo, W., Rochaddi, B., Ismanto, A., Wetchayont, P., Wirasatriya, A. 2021. Seasonal Variability of Waves Within the Indonesian Seas and Its Relation With the Monsoon Wind. ILMU KELAUTAN. Indonesian Journal of Marine Sciences, 26(3), 189–196. https://doi.org/10.14710/ik.ijms.26.3.189-196.
Qiao, F., Zhao, W., Yin, X., Huang, X., Liu, X., Shu, Q., Wang, G., Song, Z., Li, X., Liu, H., Yang, G., Yuan, Y. 2016. A Highly Effective Global Surface Wave Numerical Simulation with Ultra-High Resolution. International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 0(November), 46–56. https://doi.org/10.1109/SC.2016.4.
Rachmayani, R., Ningsih, N. S., Ramadhan, H., Nurfitri, S. 2018. Analysis of Ocean Wave Characteristic in Western Indonesian Seas using Wave Spectrum Model. MATEC Web of Conferences, 147, 05001. https://doi.org/10.1051/matecconf/201814705001.
Ribal, A., Babanin, A. V., Zieger, S., Liu, Q. 2020. A High-Resolution Wave Energy Resource Assessment of Indonesia. Renewable Energy, 160, 1349–1363. https://doi.org/10.1016/j.renene.2020.06.017.
Rogers, W. E., Dykes, J., Wittmann, P. 2014. US Navy Global and Regional Wave Modeling. Oceanography, 27(3), 56–67. https://doi.org/10.5670/oceanog.2014.68
Rosenthal, W., Lehner, S. 2008. Rogue Waves: Results of the MaxWave Project. Journal of Offshore Mechanics and Arctic Engineering, 130(2). https://doi.org/10.1115/1.2918126.
Salim, A. 2023. Dampak Perubahan Iklim terhadap Transportasi Laut. SENSISTEK, 6(2), 168–171.
Setiawan, B. 2021. Pengaruh Seruakan Dingin Asia Terhadap Tinggi Gelombang Maksimum di Selat Karimata dan Laut Jawa. Megasains, 12(2), 42–47. https://doi.org/10.46824/megasains.v12i2.82.
Sprintall, J., Arnold L. Gordon, Ariane Koch-Larrouy, Lee, T., James T. Potemra, Kandaga Pujiana, Wijffels, S. E. 2014. The Indonesian Seas and Their Role in the Coupled Ocean-Climate System. Nature Geosciences, 7(7), 487–492.
Stevens, S. C., Parsons, M. G. 2002. Effects of Motion at Sea on Crew Performance: A Survey. Marine Technology and SNAME News, 39(01), 29–47. https://doi.org/10.5957/mt1.2002.39.1.29.
Sunardi, E. F., Choiron, M. A., Sugiarto, A. W. M., Setyarini, P. H., Nurwahyudi, A. 2024. Fishing Vessel Safety in Indonesia: A Study of Accident Characteristics and Prevention Strategies. International Journal of Safety and Security Engineering, 14(2), 499–511. https://doi.org/10.18280/ijsse.140217.
Syme, G. J., Dzidic, P., Dambacher, J. M. 2012. Enhancing Science in Coastal Management Through Understanding Its Role in the Decision Making Network. Ocean & Coastal Management, 69, 92–101. https://doi.org/10.1016/j.ocecoaman.2012.08.012.
Thomas, T. J., Dwarakish, G. S. 2015. Numerical Wave Modelling – A Review. Aquatic Procedia, 4, 443–448. https://doi.org/10.1016/j.aqpro.2015.02.059.
Valiente, N. G., Saulter, A., Gomez, B., Bunney, C., Li, J.-G., Palmer, T., Pequignet, C. 2023. The Met Office Operational Wave Forecasting System: the Evolution of the Regional and Global Models. Geoscientific Model Development, 16(9), 2515–2538. https://doi.org/10.5194/gmd-16-2515-2023.
Windupranata, W., Nusantara, A.D.S., Wijaya, C., Prijatna, D. 2019. Impact Analysis of Tropical Cyclone Cempaka-Dahlia on Wave Heights in Indonesian Waters from Numerical Model and Altimetry Satellite. KnE Engineering. https://doi.org/10.18502/keg.v4i3.5851.
WW3DG. 2016. User manual and system documentation of WAVEWATCH III version 5.16 Tech. Note 329. NOAA/NWS/NCEP/MMAB.
Zhang, Z., Li, X.-M. 2017. Global Ship Accidents and Ocean Swell-Related Sea States. Natural Hazards and Earth System Sciences, 17(11), 2041–2051. https://doi.org/10.5194/nhess-17-2041-2017.
Zheng, C., Li, X., Azorin-Molina, C., Li, C., Wang, Q., Xiao, Z., Yang, S., Chen, X., Zhan, C. 2022. Global Trends in Oceanic Wind Speed, Wind-Sea, Swell, and Mixed Wave Heights. Applied Energy, 321, 119327. https://doi.org/10.1016/j.apenergy.2022.119.
Zheng, K., Sun, J., Guan, C., Shao, W. 2016. Analysis of the Global Swell and Wind Sea Energy Distribution Using WAVEWATCH III. Advances in Meteorology, 1–9. https://doi.org/10.1155/2016/8419580.
Zieger, S., Greenslade, D., Harley, M., Turner, I., Splinter, K., Hansen, J., Lowe, R., Kinsela, M., Cuttler, M. 2019. Variable-resolution Wave Modelling for Coastal Applications. Australasian Coasts & Ports 2019 Conference, 1262–1266.
Adhitya, G.W. 2018. Olah Gerak Kapal MV. Bernhard Schulte Dalam Kondisi Lightship saat Menghadapi Hurricane Matthew. Jurnal Dinamika Bahari. 1–10.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Triyono, Wilhelmina Patty, Johnny Budiman, Rose O.S.E. Mantiri, Billy Th. Wagey, Revols D. Ch. Pamikiran, Deiske A. Sumilat, Usman Efendi

This work is licensed under a Creative Commons Attribution 4.0 International License.












