A New and Practical Method for Measuring Sponge Spicules

Authors

DOI:

https://doi.org/10.35800/jip.v11i2.47882

Keywords:

Spicules; , sponges;, SEM;, Wallacea;, biomaterial;, sponge taxonomy;

Abstract

Binocular light microscopy (BLM) is an excellent match for a scanning electron microscope (SEM) and a trinocular light microscope equipped with a micrometer (TLM). The practicality, user-friendliness, and short-time analysis of BLM make this method a good choice for spicule analysis. However, its effectiveness and accuracy are yet to be confirmed. This study aimed to validate the effectiveness of BLM by comparing its usefulness to both TLM and the gold standard methods. BLM was first subjected to measuring megascleres and microscleres of 2 sponges. Then, by using the If function built-in Excell and t-test in SPSS 16.0, the compatibility of BLM was evaluated against SEM by measuring the length of spicules from 4 Sangihe sponges and their counterpart species from different locations. Furthermore, the t-test analysis was used to validate the compatibility and effectiveness of our method to the TLM by measuring the spicules of four sponges. Both the F-function and the t-test analysis proved BLM was compatible with SEM with both measurements showing a perfect match for megascleres typed spicules of 4 compared sponges. This new technique also showed a perfect match with SEM (p = 0.367, t-test) and with TLM (p = 0.963, t-test).

Keywords: Spicules, sponges, SEM, Wallacea, biomaterial, sponge taxonomy

References

Acharya, K. P., & Pathak, S. (2019). Applied Research in Low-Income Countries: Why and How? Frontiers in Research Metrics and Analytics, 4(November). https://doi.org/10.3389/frma.2019.00003

Aizenberg, J., Weaver, J. C., Thanawala, M. S., Sundar, V. C., Morse, D. E., & Fratzl, P. (2005). Materials science: Skeleton of euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science, 309(5732), 275–278. https://doi.org/10.1126/science.1112255

Alvarez, B., Soest, R. O. B. W. M. V. A. N., & Rutzler, K. (1998). A Revision of Axinellidae of the Central West Atlantic Region SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 598. 598.

Anđjus, S., Tubić, B., Ilić, M., Đuknić, J., Gačić, Z., & Paunović, M. (2016). Freshwater Sponges – Skeletal Structure Analysis Using Light Microscopy and Scanning Electron Microscopy. Water Research and Management, 6(2), 15–17. http://www.wrmjournal.com/index.php?option=com_content&view=article&id=353&Itemid=290

Balansa, W., Wodi, S. I. M., Rieuwpassa, F. J., & Ijong, F. G. (2020). Agelasines B, D and antimicrobial extract of a marine sponge Agelas sp. From Tahuna Bay, Sangihe Islands, Indonesia. Biodiversitas, 21(2), 699–706. https://doi.org/10.13057/biodiv/d210236

Bell, J. J. (2008). The functional roles of marine sponges. Estuarine, Coastal and Shelf Science, 79(3), 341–353. https://doi.org/10.1016/j.ecss.2008.05.002

Bell, J. J., & Smith, D. (2004). Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: Richness and abundance. Journal of the Marine Biological Association of the United Kingdom, 84(3), 581–591. https://doi.org/10.1017/S0025315404009580h

Calcinai, B., Bastari, A., Bavestrello, G., Bertolino, M., Horcajadas, S. B., Pansini, M., Makapedua, D. M., & Cerrano, C. (2017). Demosponge diversity from North Sulawesi, with the description of six new species. ZooKeys, 2017(680), 105–150. https://doi.org/10.3897/zookeys.680.12135

Cunningham, B. A. (1984). of Acclimation: 304(July), 1–3.

Eder, C., Proksch, P., Wray, V., Van Soest, R. W. M., Ferdinandus, E., Pattisina, L. A., & Sudarsono. (1999). New bromopyrrole alkaloids from the Indopacific sponge Agelas nakamurai. Journal of Natural Products, 62(9), 1295–1297. https://doi.org/10.1021/np990071f

FAO. (2020). Identification of sponge species. 679849.

Granito, R. N., Custódio, M. R., & Rennó, A. C. M. (2017). Natural marine sponges for bone tissue engineering: The state of art and future perspectives. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 105(6), 1717–1727. https://doi.org/10.1002/jbm.b.33706

Hentschel, E. (1995). z ( x + A ) -z ( x ). 35(2), 211–217.

Hooper, J. N. a. (2003). ‘Sponguide’. Guide To Sponge Collection and Identification. Order A Journal On The Theory Of Ordered Sets And Its Applications, Version, 129.

Hooper, J. N. A., & Van Soest, R. W. M. (2002). Systema Porifera: A Guide to the Supraspecific Classification of the Phylum Porifera. 1707.

Hoshino, T. (1985). Hoshino,1985.pdf.

Jones, C. (1998). curvature. 1 984.

Levi, C., Laboute, P., Bargibant, G., & Menou, J. (1998). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title.

Maldonado, M., Carmona, M. C., Uriz, M. J., & Cruzado, A. (1999). Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature, 401(6755), 785–788. https://doi.org/10.1038/44560

Matteuzzo, M. C., Volkmer-Ribeiro, C., Varajão, A. F. D. C., Varajão, C. A. C., Alexandre, A., Guadagnin, D. L., & Almeida, A. C. S. (2015). Environmental factors related to the production of a complex set of spicules in a tropical freshwater sponge. Anais Da Academia Brasileira de Ciencias, 87(4), 2013–2029. https://doi.org/10.1590/0001-3765201520140461

Mercurio, M., Corriero, G., Scalera Liaci, L., & Gaino, E. (2000). Silica content and spicule size variations in Pellina semitubulosa (Porifera: Demospongiae). Marine Biology, 137(1), 87–92. https://doi.org/10.1007/s002270000336

Riyanti, Balansa, W., Liu, Y., Sharma, A., Mihajlovic, S., Hartwig, C., Leis, B., Rieuwpassa, F. J., Ijong, F. G., Wägele, H., König, G. M., & Schäberle, T. F. (2020). Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-76256-2

Rützler, K., Piantoni, C., Van Soest, R. W. M., & Díaz, M. C. (2014). Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay. In Zootaxa (Vol. 3805, Issue 1). https://doi.org/10.11646/zootaxa.3805.1.1

Sapar, A., Noor, A., & Soekamto, N. H. (2013). A Preliminary Study of Bioactivity and Identification of Secondary Metabolite Functional Groups in Extracts of Agelas nakamurai Hoshino Sponge from Spermonde Archipelago , Indonesia. Marina Chimica Acta, 14(2), 6–10.

Sapar, A., Noor, A., Soekamto, N. H., & Ahmad, A. (2014). Rapid screening for cytotoxicity and group identification of secondary metabolites in methanol extracts from four sponge species found in Kapoposang Island, Spermonde Archipelago, Indonesia. Kuroshio Science, 8(1), 25–31.

Subagio, I. B., Setiawan, E., Hariyanto, S., & Irawan, B. (2017). Spicule size variation in Xestospongia testudinaria Lamarck, 1815 at Probolinggo-Situbondo coastal. AIP Conference Proceedings, 1854. https://doi.org/10.1063/1.4985425

Sundar, V. C., Yablon, A. D., Grazul, J. L., Ilan, M., & Aizenberg, J. (2003). Fibre-optical features of a glass sponge. Nature, 424(6951), 899–900. https://doi.org/10.1038/424899a

Tansathien, K., Suriyaaumporn, P., Charoenputtakhun, P., Ngawhirunpat, T., Opanasopit, P., & Rangsimawong, W. (2019). Development of sponge microspicule cream as a transdermal delivery system for protein and growth factors from deer antler velvet extract. Biological and Pharmaceutical Bulletin, 42(7), 1207–1215. https://doi.org/10.1248/bpb.b19-00158

Uriz, M. J., Turon, X., Becerro, M. A., & Agell, G. (2003). Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique, 62(4), 279–299. https://doi.org/10.1002/jemt.10395

Vargas, S., Schuster, A., Sacher, K., Büttner, G., Schätzle, S., Läuchli, B., Hall, K., Hooper, J. N. A., Erpenbeck, D., & Wörheide, G. (2012). Barcoding sponges: An overview based on comprehensive sampling. PLoS ONE, 7(7), 1–7. https://doi.org/10.1371/journal.pone.0039345

Venkatesan, J., Anil, S., Chalisserry, E. P., & Jayachandran Venkatesan, Sukumaran Anil, Elna P. Chalisserry, and S.-K. K. (2016). Marine sponges: Chemicobiological and biomedical applications. Marine Sponges: Chemicobiological and Biomedical Applications, 1–381. https://doi.org/10.1007/978-81-322-2794-6

Voogd, N. J. De, & Soest, R. W. M. Van. (2002). Indonesian sponges of the genus Petrosia Vosmaer ( Demospongiae : Haplosclerida ). Zool.Med.Leiden, 76(16), 193–209.

Wang, J., Zhou, J., Yang, Q., Wang, W., Liu, Q., Liu, W., & Liu, S. (2020). Effects of 17 α-methyltestosterone on the transcriptome, gonadal histology and sex steroid hormones in Pseudorasbora parva. Theriogenology, 155, 88–97. https://doi.org/10.1016/j.theriogenology.2020.05.035

Downloads

Published

2023-06-07

How to Cite

Rieuwpassa, F. J., Tomasoa, A. M., Palawe, J. F. P., Rieuwpassa, F., Mege, R. A., & Balansa, W. (2023). A New and Practical Method for Measuring Sponge Spicules. Jurnal Ilmiah Platax, 11(2), 322–332. https://doi.org/10.35800/jip.v11i2.47882