Entomopathogenic Fungi Efficacy Test Beauveria bassiana (Bals) Vuill on Spodoptera exigua (Hubner) Larvae Mortality in Scallion Plants

Authors

  • Putra Manurung Universitas Sam Ratulangi
  • Dantje Tarore Sam Ratulangi University
  • Frangky J. Paat Sam Ratulangi University
  • Jackson F. Watung Sam Ratulangi University

DOI:

https://doi.org/10.35791/jat.v7i1.52173

Keywords:

Spodoptera exigua, Beauveria bassiana, Allium fistulosum L.

Abstract

Spodoptera exigua, a member of the Lepidoptera order and the Noctuidae family, has the ability to rapidly attack leek plants (Allium fistulosum L.). The goal of this study was to use B. bassiana on A. fistulosum to determine the death rate of S. exigua larvae. A completely randomized design (CRD) was used, with four treatments: P0 (control), P1 (conidia concentration 106/ml), P2 (conidia concentration 107/ml), and P3 (conidia concentration 108/ml). Repeat four times. Each replication consisted of ten larvae. A total of 160 S. exigua larvae were required. The observation findings showed that each concentration had a different LT50 value. Based on the LT50 data, treatment with a concentration of 108/ml effectively suppressed 50% of the larvae within 4 days. Significant temporal differences were detected for each conidia concentration. On the fourth day after application, a high mortality rate was observed in treatment P3 (conidia concentration of 108/ml), indicating a consistent daily larval mortality rate. The attack intensity reached 30% in just four days with a conidia concentration of 108/ml (P3), followed by P2 (107/ml) and P1 (106/ml). The mortality rate of S. exigua larvae increases linearly with conidia concentration.

Keywords: Spodoptera exigua, Beauveria bassiana, Allium fistulosum L.

 

Abstrak. Spodoptera exigua tergolong ordo Lepidoptera, famili Noctuidae. S. exigua dapat menyerang tanaman tanaman bawang daun (Allium fistulosum L.) dengan cepat dalam waktu yang singkat. Tujuan penelitian ini adalah aplikasi B. bassiana pada A. fistulosum untuk mendapatkan tingkat mortalitas larva S. exigua. Completely randomized design (RAL) 4 perlakuan, terdiri atas: P0 (control), P1 (konsentrasi konidia 106/ml), P2 (konsentrasi konidia 107/ml), dan P3 (konsentrasi konidia 108/ml). Ulangan empat kali. Sampel disetiap ulangan terdiri atas 10 larvae. Total larvae yang diperlukan yaitu sebanyak 160 larva S. exigua. Hasil pengamatan mengindikasikan bahwa setiap konsentrasi memiliki nilai LT50 yang bervariasi. Dari data LT50 yang diperoleh, perlakuan dengan konsentrasi 108/ml sangat cepat mengendalikan 50 persen larvae dalam waktu 4 hari. Perbedaan waktu signifikan disetiap konsentrasi konidia yang diterapkan. Pada hari keempat setelah aplikasi, tingkat mortalitas yang signifikan terjadi pada perlakuan P3 (konsentrasi konidia 108/ml), menunjukkan tingkat mortalitas larva yang stabil setiap harinya. Intensitas serangan mencapai 30% hanya dalam empat hari dengan penggunaan konsentrasi konidia 108/ml (P3), selanjutnya P2 (konidia 107/ml), dan P1 (konidia 106/ml). Semakin tinggi konsentrasi konidia linier terhadap mortalitas level larva S. exigua.

Kata kunci: Spodoptera exigua, Beauveria bassiana, Allium fistulosum L.

References

Alexandre, T. M., Alves, L. F. A., Neves, P. M. O. J., & Alves, S. B. (2006). Efeito da temperatura e cama do aviário na virulência de Beauveria bassiana (Bals.) Vuill. e Metarhizium anisopliae (Metsch.) para o controle do cascudinho (Alphitobius diaperinus) (Panzer) (Coleoptera: Tenebrionidae). Neotropical Entomology, 35(1), 75–82. https://doi.org/10.1590/S1519-566X2006000100011

Abarna, V. P., Vishnupriya, R., Sathiah, N., & Sendhilvel, V. (2022). Efficacy of talc-based formulation of Beauveria bassiana (Bals.) Vuill. (MZ749636) against two spotted spider mite, Tetranychus urticae Koch. Journal of Applied and Natural Science, 14(SI), 232–237. https://doi.org/10.31018/jans.v14iSI.3707

Bakr, E. M., Hassan, D. M. A., & Haron, E. N. (2024). Evaluation of some techniques for drying conidiated rice culture of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. with a bioassay evaluating their eligibility. Egyptian Journal of Biological Pest Control, 34(1). https://doi.org/10.1186/s41938-024-00805-4

Bayındır Erol, A., Erdoğan, O., & Sevinç, M. S. (2024). Efficacy of Beauveria bassiana (Bals.) Vuill. Isolates on Dried Fruit Moth (Plodia interpunctella [Lepidoptera: pyralidae]). Black Sea Journal of Agriculture, 7(1), 77–81. https://doi.org/10.47115/bsagriculture.1393389

Bullangpoti, V., Khumrungsee, N., Pluempanupat, W., Kainoh, Y., & Saguanpong, U. (2011). Toxicity of ethyl acetate extract and ricinine from Jatropha gossypifolia senescent leaves against Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Journal of Pesticide Science. https://doi.org/10.1584/jpestics.G10-93

Baranek, J., Pluskota, M., Rusin, M., Konecka, E., Kaznowski, A., & Wiland-Szymańska, J. (2023). Insecticidal activity of Bacillus thuringiensis strains isolated from tropical greenhouses towards Cydia pomonella and Spodoptera exigua larvae. BioControl, 68(1), 39–48. https://doi.org/10.1007/s10526-022-10173-3

Celar, F. A., & Kos, K. (2012). Compatibility of selected herbicides with entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. Acta Agriculturae Slovenica, 99(1), 57–63. https://doi.org/10.2478/v10014-012-0007-2

Aminah Sri Nur, Tamrin Abdullah, and Nidaul Fajriani. 2024. Management Technique Against Spodoptera exigua (Hübner) in the Different Elevation of Shallot. BIO Web of Conferences 96, 06001. https://doi.org/10.1051/bioconf/20249606001.

Da Silva, R. Z., & Neves, P. M. O. J. (2005). Techniques and parameters used in compatibility tests between Beauveria bassiana (Bals) Vuill and in vitro phytosanitary products. Pest Management Science, 61(7), 667–674. https://doi.org/10.1002/ps.1035

Do Amaral Dal Pogetto, M., & Wilcken, C. (2012). The effect of beauveria bassiana on brazilian poplar moth condylorrhiza vestigialis (Lepidoptera: Crambidae). Journal of Plant Protection Research, 52(1), 10–14. https://doi.org/10.2478/v10045-012-0002-y

Erler, F., & Ates, A. O. (2015). Potential of two entomopathogenic fungi, beauveria bassiana and metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the june beetle. Journal of Insect Science, 15(1). https://doi.org/10.1093/jisesa/iev029

Haron, E. N., Hassan, D. M. A., El-Said, E., Zaid, N. A., Deraz, S. F., & Serour, E. A. (2025). Colonization effect of Beauveria bassiana (Bals.) Vuill. on tomato plant and Bemisia tabaci. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-00562-w

Homayoonzadeh, M., Esmaeily, M., Talebi, K., Allahyari, H., Reitz, S., & Michaud, J. P. (2022). Inoculation of cucumber plants with Beauveria bassiana enhances resistance to Aphis gossypii (Hemiptera: Aphididae) and increases aphid susceptibility to pirimicarb. European Journal of Entomology, 119, 1–11. https://doi.org/10.14411/EJE.2022.001

Hendra, Y., Trizelia, & Syahrawati, M. (2023). Colonization of the entomopathogenic fungus Beauveria bassiana (Bals.)Vuill. on rice and its impact on nymph mortality and fecundity of brown planthopper (Nilaparvata lugens Stål). Jurnal Entomologi Indonesia, 20(3), 203–212. https://doi.org/10.5994/jei.20.3.203

He, W., Zhao, X., Ge, S., & Wu, K. (2021). Food attractants for field population monitoring of Spodoptera exigua (Hübner). Crop Protection, 145. https://doi.org/10.1016/j.cropro.2021.105616

He, L., Ou-Yang, Y. Y., Li, N., Chen, Y., Liu, S. Q., & Huang, G. H. (2020). Regulation of Chitinase in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) During Infection by Heliothis virescens ascovirus 3h (HvAV-3h). Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00166

Hassan, F. R., Abdullah, S. K., & Assaf, L. H. (2019). Pathogenicity of the entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill. endophytic and a soil isolate against the squash beetle, Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae). Egyptian Journal of Biological Pest Control, 29(1). https://doi.org/10.1186/s41938-019-0169-x

Hafeez, M., Liu, S., Jan, S., Ali, B., Shahid, M., Fernández-Grandon, G. M., … Wang, M. (2019). Gossypol-induced fitness gain and increased resistance to deltamethrin in beet armyworm, Spodoptera exigua (Hübner). Pest Management Science, 75(3), 683–693. https://doi.org/10.1002/ps.5165

Jia, B., Liu, Y., Zhu, Y. C., Liu, X., Gao, C., & Shen, J. (2009). Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pest Management Science, 65(9), 996–1002. https://doi.org/10.1002/ps.1785

Kirkland, B. H., Westwood, G. S., & Keyhani, N. O. (2004). Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. Journal of Medical Entomology, 41(4), 705–711. https://doi.org/10.1603/0022-2585-41.4.705

Kryukov, V. Y., Yaroslavtseva, O. N., Surina, E. V., Tyurin, M. V., Dubovskiy, I. M., & Glupov, V. V. (2015). Immune reactions of the greater wax moth, Galleria mellonella L. (lepidoptera, pyralidae) larvae under combined treatment of the entomopathogens Cordyceps militaris (L.: Fr.) Link and Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota, Hypocreales). Entomological Review, 95(6), 693–698. https://doi.org/10.1134/S0013873815060020

Long, D. W., Groden, E., & Drummond, F. A. (2000). Horizontal transmission of Beauveria bassiana (Bals.) Vuill. Agricultural and Forest Entomology, 2(1), 11–17. https://doi.org/10.1046/j.1461-9563.2000.00046.x

Lanzotti, V., Scala, F., & Bonanomi, G. (2014, November 9). Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochemistry Reviews. Kluwer Academic Publishers. https://doi.org/10.1007/s11101-014-9366-0

Lai, T., & Su, J. (2011). Effects of chlorantraniliprole on development and reproduction of beet armyworm, Spodoptera exigua (Hübner). Journal of Pest Science, 84(3), 381–386. https://doi.org/10.1007/s10340-011-0366-1

Mousavi, M., Ghosta, Y., & Maroofpour, N. (2020). Insecticidal activity and sublethal effects of Beauveria bassiana (Bals.- Criv.) Vuill. isolates and essential oils against Aphis gossypii Glover, 1877 (Hemiptera: Aphididae). Acta Agriculturae Slovenica, 115(2), 463–472. https://doi.org/10.14720/aas.2020.115.2.1306

Moar, W. J., Pusztai-Carey, M., Van Faassen, H., Bosch, D., Frutos, R., Rang, C., … Adang, M. J. (1995). Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 61(6), 2086–2092. https://doi.org/10.1128/aem.61.6.2086-2092.1995

Membang, G., Ambang, Z., Mahot, H. C., Kuate, A. F., Fiaboe, K. K. M., & Hanna, R. (2020). Cosmopolites sordidus (Germar) susceptibility to indigenous Cameroonian Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) isolates. Journal of Applied Entomology, 144(6), 468–480. https://doi.org/10.1111/jen.12757

Maharjan, R., Ahn, J., & Yi, H. (2022). Interactive Effects of Temperature and Plant Host on the Development Parameters of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Insects, 13(8). https://doi.org/10.3390/insects13080747

Ownley, B. H., Gwinn, K. D., & Vega, F. E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl, 55(1), 113–128. https://doi.org/10.1007/s10526-009-9241-x

Paat F. J. et al. 2024. Analysis of biopesticide active compounds in Barringtonia asiatica L. Kurz using the GC-MS method. IOP Conf. Ser.: Earth Environ. Sci.1302 012009. DOI 10.1088/1755-1315/1302/1/012009 https://iopscience.iop.org/article/10.1088/1755-1315/1302/1/012009

Park, Y. L., Naharki, K., Karimzadeh, R., Seo, B. Y., & Lee, G. S. (2023). Rapid Assessment of Insect Pest Outbreak Using Drones: A Case Study with Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) in Soybean Fields. Insects, 14(6). https://doi.org/10.3390/insects14060555

Paat, F.J. 2012. Pemanfaatan Ekstrak Barringtonia asiatica (L.) Kurz dan Pola Tanam Dalam Penerapan PHT Terhadap Crocidolomia pavonana Fabricius Pada Kubis (Brassica oleraceae (L.) Var. Capitata. Disertasi.

Roesli, S. H., Kaligis, J. B., & Watung, J. F. (2026). Inventory of Aquatic Insects as Bioindicators of Pollution in Sosongian Watershed, South Minahasa District. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 6(2), 445–453. https://doi.org/10.35791/jat.v6i2.64521

Rosas-García, N. M., Torres-Ortega, J. A., & Villegas-Mendoza, J. M. (2021). Lethal and Sublethal Effects of Commercial Essential Oils on the Life Cycle of Spodoptera exigua (Hübner). Southwestern Entomologist, 46(3), 613–623. https://doi.org/10.3958/059.046.0303

Song, C., Yang, X., Kang, G., He, L., Wang, W., Han, X., Xie, Y., & Wu, K. (2025). Selection Behavior of the Beet Armyworm, Spodoptera exigua (Hübner) Between Bt Maize and Conventional Maize Plants. Insects, 16(10), 1059. https://doi.org/10.3390/insects16101059

Souza, M. E. C. e., Nóbrega, F., & Bento, A. A. (2023). Can Beauveria bassiana (Bals.-Criv.) Vuill. Control the Key Fruit Pests of the European Chestnut Tree, under Field Conditions? Insects, 14(4). https://doi.org/10.3390/insects14040342

Su, H., Wu, J., Zhang, Z., Ye, Z., Chen, Y., & Yang, Y. (2021). Effects of cadmium stress at different concentrations on the reproductive behaviors of beet armyworm Spodoptera exigua (Hübner). Ecotoxicology, 30(3), 402–410. https://doi.org/10.1007/s10646-021-02365-x

Tarore, D., Montong, V. B., Manueke, J., Mokosuli, Y. S., & Mandey, L. C. (2025). Preliminary laboratory evaluation of Beauveria bassiana (Bals.) Vuill. for the control of Necrobia rufipes (De Geer) on stored copra. Bulletin of Insectology, 78, 35–40. https://doi.org/10.3897/bull.insectology.155814

Tkaczuk, C., Harasimiuk, M., Król, A., & Beres, P. K. (2015). The effect of selected pesticides on the growth of entomopathogenic fungi Hirsutella nodulosa and Beauveria bassiana. Journal of Ecological Engineering, 16(3), 177–183. https://doi.org/10.12911/22998993/2952

Tambelu, M. F., Tarore, D., Rimbing, J., & Paat, F. J. (2024). Development Of Warehouse Pest Sitophilus zeamais Motsch. On Corn Seed Varieties Bisi 18, Jh 37, Lamuru, Pertiwi 3 And Batras 1 In The Laboratory. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 5(1), 230–239. https://doi.org/10.35791/jat.v5i1.56351

Togbé, C. E., Haagsma, R., Zannou, E., Gbèhounou, G., Déguénon, J. M., Vodouhê, S., … van Huis, A. (2015). Field evaluation of the efficacy of neem oil (Azadirachta indica A. Juss) and Beauveria bassiana (Bals.) Vuill. in cotton production. Journal of Applied Entomology, 139(3), 217–228. https://doi.org/10.1111/jen.12174

Wanta, N. N., Dumalang, S., Paat, F. J., & Paruntu, M. H. B. (2026). Types And Populations of Pests on Cabbage Plants Which Are Planted Intercropping with Mustard Greens Refugia. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 6(2), 525–534. https://doi.org/10.35791/jat.v6i2.52482

Wang, W., Mo, J., Cheng, J., Zhuang, P., & Tang, Z. (2006). Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 84(3), 180–187. https://doi.org/10.1016/j.pestbp.2005.07.002

Watung, J., Umboh, U., Paat, F.J., Tarore, D., & Dumalang, S. (2026). Percentage of Attacks and Intensity of Damage by Emerald Beetle Pest Agrilus sp. (Coleoptera: Buprestidae) on Clove Plantations in Pinolosian District, South Bolaang Mongondow Regency. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 6(2), 358–370. https://doi.org/10.35791/jat.v6i2.64520

Wan, N. F., Ji, X. Y., Zhang, H., Yang, J. H., & Jiang, J. X. (2015). Nucleopolyhedrovirus infection and/or parasitism by Microplitis pallidipes Szepligeti affect hemocyte apoptosis of Spodoptera exigua (Hübner) larvae. Journal of Invertebrate Pathology, 132, 165–170. https://doi.org/10.1016/j.jip.2015.10.004

Witjaksono, Trisyono, Y. A., Tanjung, H. R., Azzahra, Z. 2024. Population Dynamic and Pheromone Use for Early Monitoring of Spodoptera exigua Hubner (Lepidoptera: Noctuidae) in Indonesia. Jurnal of Tropical Plant Pests and Diseases. Vol. 24 No.1.

Yogananda, T., Ramanagouda, S. H., Venkateshalu, B., Jamunarani, G. S., Rashmi, S. H., Awati, M., & Hadimani, H. P. (2023). Colonization and endophytic effect of Beauveria bassiana (Bals.-Criv.) Vuill. UHSB-END1 against Myzus persicae (Sulzer) and Plutella xylostella (L.) in cabbage. Egyptian Journal of Biological Pest Control, 33(1). https://doi.org/10.1186/s41938-023-00698-9

Yooboon, T., Pengsook, A., Poonsri, W., Pluempanupat, W., & Bullangpoti, V. (2020). Toxicity of Phenylpropanoids from Alpinia galanga (Zingiberaceae) extracts against Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Phytoparasitica, 48(5), 833–840. https://doi.org/10.1007/s12600-020-00830-7

Yağci, M. (2022). Determination of the efficacy of two local Beauveria bassiana (Bals.-Criv.) Vuill, 1912 (Hypocreales: Cordycipitaceae) isolates (Bb-1 and Bv-1) against root-knot nematodes. Journal of Global Innovations in Agricultural Sciences, 10(1), 37–41. https://doi.org/10.22194/JGIAS/10.975

Zafar, J., Shoukat, R. F., Zhu, Z., Fu, D., Xu, X., & Jin, F. (2024). Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Journal of Fungi, 10(7). https://doi.org/10.3390/jof10070469

Zimmermann, G. (2007). Review on the safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology. https://doi.org/10.1080/09583150701309006

Zamora-Avilés, N., Orozco-Flores, A. A., Cavazos-Vallejo, T., Romo-Sáenz, C. I., Cuevas-García, D. A., Gómez-Flores, R., & Tamez-Guerra, P. (2024). Intra-Phenotypic and Genotypic Variations of Beauveria bassiana (Bals.) Vuill. Strains Infecting Aedes aegypti L. Adults. International Journal of Molecular Sciences, 25(16). https://doi.org/10.3390/ijms25168807.

Downloads

Published

2026-01-24

How to Cite

Manurung, P., Tarore, D., Paat, F. J., & Watung, J. F. (2026). Entomopathogenic Fungi Efficacy Test Beauveria bassiana (Bals) Vuill on Spodoptera exigua (Hubner) Larvae Mortality in Scallion Plants. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 7(1), 21–37. https://doi.org/10.35791/jat.v7i1.52173

Most read articles by the same author(s)

<< < 1 2 3 > >>