Evaluation of Viability, Vigor, and Early Seedling Growth of Mango (Mangifera indica L.) from Polyembryonic and Zygotic Seeds
DOI:
https://doi.org/10.35791/jat.v6i2.58465Keywords:
polyembryony, Mangifera indica, zygotic seedlings, seed viability, seed vigor, mean germination time, early seedling growth, leaf area, root biomass, nursery performanceAbstract
Polyembryony in mango offers a potential route to produce uniform planting material, yet its practical value relative to zygotic seed sources requires empirical evidence. This study assessed whether polyembryonic seeds can serve as reliable sources of seedlings and examined how embryo origin and seed integrity affect early growth. The research was conducted for eight months in Eris Village and in the Plant Science Laboratory and shade house. A randomized complete block design with five treatments and four replications was used, comprising whole zygotic seeds that produced a single seedling (Z1), whole polyembryonic seeds that produced two and three seedlings (U2, U3), and split polyembryonic seeds yielding two and three seedlings (B2, B3). Viability exceeded eighty five percent for the zygotic lot and for the intact polyembryonic lots, and mean germination time was 3.243 days, which together indicate good physiological quality. Analysis of variance detected no significant differences among treatments for plant height, leaf number, and stem diameter, which shows that early vegetative growth was broadly comparable regardless of seed origin. Root weight differed at the five percent level, with Z1 and U2 forming a higher group than U3, B2, and B3, while leaf area varied descriptively and tended to be greater in intact seed treatments without confirmed statistical separation. Visual records of germination, seedling morphology, and nursery beds supported these findings. Overall, polyembryonic seeds, whether used intact or split, produced seedlings whose early performance matched that of zygotic seedlings, which supports their use as feasible sources of planting material under the conditions of this study, while highlighting a possible advantage in belowground biomass for some intact treatments.
Keywords : polyembryony, Mangifera indica, zygotic seedlings, nucellar seedlings, seed viability, seed vigor, mean germination time, early seedling growth, leaf area, root biomass, nursery performance
References
Arellano-Durán N., Villegas-Monter Á., Muñoz-Orozco A. 2018. Optimum sample size in quantitative characteristics of seeds of polyembryonic mango. Revista Brasileira de Fruticultura (2018). doi: 10.1590/0100-29452018519
Alcalá-Rico J. S. G. J., Espinoza-Velázquez J., López-Benítez A., Borrego-Escalante F., Rodriguez-Herrera R., Hernández-Martínez R. 2019. Agronomic performance of maize (Zea mays l.) populations segregating the polyembryony mutant. Revista de la Facultad de Ciencias Agrarias (2019) 51(1), 1–18. https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/issue/view/217
Aleza P., Juárez J., Ollitrault P., Navarro L. 2010. Polyembryony in non-apomictic citrus genotypes. Annals of Botany (2010). doi: 10.1093/aob/mcq148
Baptista J. O., Lopes J. C., Schmildt E. R., de Araujo C. P., Alexandre R. S. 2020. Grafting methods and use of fasteners in monoembryonic, polyembryonic, and multi-stemmed jaboticaba (Plinia jaboticaba (Vell) Berg) seedlings. Comunicata Scientiae (2020). doi: 10.14295/cs.v11i0.3158
Bittencourt N. S., Moraes C. I. G. 2010. Self-fertility and polyembryony in South American yellow trumpet trees (Handroanthus chrysotrichus and H. ochraceus, Bignoniaceae): A histological study of postpollination events. Plant Systematics and Evolution (2010). doi: 10.1007/s00606-010-0313-2
Cobacho S. P., Grol N. A., Dros T. A., Dekkers D. T., Christianen M. J. 2022. First evidence of polyembryony in black mangrove Avicennia germinans. Botanica Marina. doi: 10.1515/bot-2022-0006.
Cruz-Requena M., Espinoza-Velázquez J., Aguilar C. N., Rodríguez-Herrera R. 2023. Polyembryony improvement effect on chemical and physical traits of maize grain. Food and Humanity (2023). doi: 10.1016/j.foohum.2023.05.003
Daniel G. A., Shivashankara K. S. 2023. Metabolite changes during the development of ovaries in monoembryonic and polyembryonic mango (Mangifera indica L.) genotypes. Plant Physiology Reports (2023). doi: 10.1007/s40502-023-00756-2
de Souza Ferreira D. N., Camargo J. L. C., Ferraz I. D. K. 2019. Do polyembryonic seeds of carapa surinamensis (Meliaceae) have advantages for seedling development? Acta Amazonica (2019). doi: 10.1590/1809-4392201801211
Duarte F. E. V. d. O., Barros D. d. R., Girardi E. A., Soares Filho W. d. S., Passos O. S. 2013. Polyembryony and morphological seed traits in citrus rootstocks. Revista Brasileira de Fruticultura (2013). doi: 10.1590/S0100-29452013000100028
Filho W. D. S. S., Souza U., Ledo C. A. D. S., Santana L. G. L., Passos O. S. 2014. Polyembryony and potential of hybrid production in citrus. Revista Brasileira de Fruticultura (2014). doi: 10.1590/0100-2945-345/13
Fukai S., Shimomura T., Kondo T. 2000. Morphological observation of polyembryony in Ophiopogon japonicus (Liliaceae). Journal of the Japanese Society for Horticultural Science (2000). doi: 10.2503/jjshs.69.614
Gutiérrez-López A. J., Espioza-Velázquez J., Flores-Gallegos A. C., López-Benitez A., Ruiz-Torres N. A., Rodríguez-Herrera R. 2019. Absence of Concordance between Polyembryony and Apomixis in Maize Confirmed through DNA Sequencing. Ecosistemas y Recursos Agropecuarios (2019). doi: 10.19136/era.a6n18.2111
Garcia-Ortiz J. D., Flores-Gallegos A. C., Espinoza-Velázquez J., Ascacio-Valdés J. A., Nery-Flores S. D., Rodríguez-Herrera R. 2023. Morphological, physicochemical, techno-functional, phytochemical, and antioxidant evaluation of polyembryonic and non-polyembryonic maize sprouts. Biocatalysis and Agricultural Biotechnology (2023). doi: 10.1016/j.bcab.2022.102583
Inoue H., Yoshimura J., Iwabuchi K. 2014. Gene expression of protein-coding and non-coding rnas related to polyembryogenesis in the parasitic wasp, copidosoma floridanum. PLoS ONE (2014). doi: 10.1371/journal.pone.0114372
Gontes-Pérez I. C., Garcia-Ortiz J. D., Espinoza-Velázquez J., Lopez-Badillo C. M., Martínez-Ávila G. C., Rodríguez-Herrera R.. 2023. Effects of growth conditions on the physicochemical, mineral, and amino acid profile of polyembryonic maize. Cereal Chemistry (2023) doi: 10.1002/cche.10710
Kashyap K., Banu S., Shrivastava M. N., Ramchiary N. 2018. Study of polyembryony and development of molecular markers for identification of zygotic and nucellar seedlings in Khasi mandarin (Citrus reticulata Blanco). International Journal of Environment, Agriculture and Biotechnology (2018). doi: 10.22161/ijeab/3.2.8
Mangla Y., Khanduri P., Gupta C. K. 2024. Polyembryony and Apomixis. Reproductive Biology of Angiosperms (2024). doi: 10.1017/9781009160414.013
Montalt R., Cuenca J., Vives M. C., Mournet P., Navarro L., Ollitrault P., Aleza P. 2023. Genotyping by Sequencing for SNP-Based Linkage Analysis and the Development of KASPar Markers for Male Sterility and Polyembryony in Citrus doi: 10.3390/plants12071567
Martínez-Ochoa E. D. C., Villegas-Velázquez I., Alarcón-Zúñiga B., González-Hernández V. A., Villegas-Monter A. 2022. Polyembryony in citrus: Does the largest embryo in the seed develop a nucellar seedling?. Scientia Agricola (2022), doi: 10.1590/1678-992X-2020-0060
Manshardt R. M., Wenslaff T. F. 2022. Zygotic Polyembryony in Interspecific Hybrids of Carica papaya and C. cauliflora. Journal of the American Society for Horticultural Science (2022). doi: 10.21273/jashs.114.4.684
Marinho R. C., Mendes-Rodrigues C., Bonetti A. M., Oliveira P. E. 2021. Stomatal size, ploidy and polyembryony in Eriotheca Stellate Trichome Species Complex (Bombacoideae – Malvaceae) in the Cerrados of Brazil. Plant Biology (2021). doi: 10.1111/plb.13177
Michel M. R., Cruz-Requena M., Avendaño-Sanchez M. C., González-Vazquez V. M., Flores-Gallegos A. C., Aguilar C. N., Espinoza-Velázquez J., Rodríguez-Herrera R. 2018. Polyembryony in Maize: A Complex, Elusive, and Potentially Agronomical Useful Trait. Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement (2018). doi: 10.5772/intechopen.70549
Mendes-Rodrigues C., Sampaio D. S., Costa M. E., de Souza Caetano A. P., Ranal M. A., Júnior N. S. B., Oliveira P. E. 2012. Polyembryony increases embryo and seedling mortality but also enhances seed individual survival in Handroanthus species (Bignoniaceae). Flora: Morphology, Distribution, Functional Ecology of Plants (2012). doi: 10.1016/j.flora.2011.10.008
Yadav C. B., Rozen A., Eshed R., Ish-Shalom M., Faigenboim A., Dillon N., Bally I., Webb M., Kuhn D., Ophir R., Cohen Y., Sherman A. 2023. Promoter insertion leads to polyembryony in mango - a case of convergent evolution with citrus. Horticulture Research (2023). doi: 10.1093/hr/uhad227
Wang X., Xu Y., Zhang S., Cao L., Huang Y., Cheng J., Wu G., Tian S., Chen C., Liu Y., Yu H., Yang X., Lan H., Wang N., Wang L., Xu J., Jiang X., Xie Z., Tan M., Larkin R. M., Chen L. L., Ma B. G., Ruan Y., Deng X., Xu Q. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics (2017) doi: 10.1038/ng.3839
Walingkas W., Tumewu P., Rantung M. R. 2023. Physiological Qualities Of Polyembryony Seeds And Zigotes Of Nangka (Artocarpus integra (Thumb) On Seed Production. Jurnal Agroekoteknologi Terapan/Applied Agroecotechnology Journal (2023). doi: 10.35791/jat.v4i2.52485
Oiyama I., Kobayashi S. 2019. Polyembryony in Undeveloped Monoembryonic Diploid Seeds Crossed with a Citrus Tetraploid. HortScience (2019). doi: 10.21273/hortsci.25.10.1276
Onovo J., Uguru M., Obi I. 2010. Implications of polyembryony on the growth and yield of fluted pumpkin (Telfairia occidentalis hook. f.). Agro-Science (2010) doi: 10.4314/as.v8i2.51111
Ochoa E. D. C. M., Andrade-Rodríguez M., Rodríguez M. R., Monter A. V. 2012. Identification of zygotic and nucellar seedlings: In polyembryonic mango cultivars. Pesquisa Agropecuaria Brasileira, doi: 10.1590/S0100-204X2012001100010
Piri D. G. Y., Raintung J. S., Walingkas S. A. 2023. Peranan Poliembrioni Terhadap Produksi Benih Pada Tanaman Jeruk Siam (Citrus nobilis L.). AGRI-SOSIOEKONOMI (2023). doi: 10.35791/agrsosek.v19i1.46757
Sun H., Zhang J., Yang L., Jiang F., Wang Y. 2020. Polyembryony in the interspecific hybrids between apricot and almond. Acta Horticulturae (2020). doi: 10.17660/ActaHortic.2020.1282.2
Santos C. Q. D. J., Girardi E. A.,Vieira E. L., Ledo C. A. D. S., Soares Filho W. D. S. 2015. Optimum sample size of fruits and seeds for polyembryony determination in citrus. Revista Brasileira de Fruticultura (2015). doi: 10.1590/0100-2945-063/14
Toting D. J., Nuñez T., Ferraren D. 2020. Comparative DNA Analysis of Coconut (Cocos nucifera L.) palms with Polyembryonic and Monoembryonic Origins. Annals of Tropical Research (2020). doi: 10.32945/atr4222.2020
Ye-Su S., Kim J. H., Wakana A. 2017. Occurrence of spontaneous polyembryony in Lilium lancifolium Thunb. Journal of the Faculty of Agriculture, Kyushu University (2017). doi: 10.5109/1854005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Stanley A. F. Walingkas, Pemmy Tumewu, Meity R. Rantung

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


















