Optimization of Electricity Transition Scenarios Toward Net Zero Emissions by 2060 in Indonesia: Resource Analysis and System Reliability
DOI:
https://doi.org/10.35791/jat.v6i2.65274Keywords:
LEAP Modeling, Renewable Energy, Emission Reduction, ENDC 2030, Net Zero EmissionAbstract
Indonesia faces a critical challenge to fulfill Indonesia's commitment to the Enhanced Nationally Determined Contribution (ENDC) 2030 and to meet the net zero greenhouse gas (GHG) emissions by 2060. This requires the electricity sector to adopt low-emission, reliable, and investment-efficient technologies. This study develops three electricity transition scenarios toward net zero emission using the Long-range Energy Alternatives Planning (LEAP) system. Three scenarios are: (1) Current Strategy (CS) with emphasis on coal-based generation with Carbon Capture and Storage (CCS); (2) Renewable Energy-Based Transition (ET) prioritizing solar, wind, hydro, and geothermal; and (3) Enhanced Renewable and New Energy Transition (EBT) combining renewables with nuclear and hydrogen baseload. Model results demonstrate that electricity demand in 2060 is projected at 1,808 TWh with peak load of 245 GW. The required generation capacity reaches 565 GW (CS), 758 GW (EBT), and 1211 GW (EBT). Peak emissions occur in 2031 at 440 MtCO₂ (CS) and 439 MtCO₂ (ET and EBT). By 2060, zero emissions are achieved in the ET and EBT scenarios, while CS still emits 103 MtCO₂. All scenarios meet the ENDC 2030 emission-reduction target. System reliability is highest in EBT and CS, whereas emission reductions are greatest in ET and EBT.
References
Wahyu Kencono, A.; Dwinugroho, M.; Satra Baruna, E.; Ajiwihanto, N. Handbook Of Energy & Economic Statistics Of Indonesia 2024. 2015, 73.
2. Dokas, I.; Panagiotidis, M.; Papadamou, S.; Spyromitros, E. The Determinants of Energy and Electricity Consumption in Developed and Developing Countries: International Evidence. Energies 2022, 15, 1–30, doi:10.3390/en15072558.
3. Ketenagalistrikan, D.J.; Energi, K.; Sumber, D.A.N.; Mineral, D.; Indonesia, R. Statistik 2024. 2025.
4. ASEAN Centre for Energy The 8th ASEAN Energy Outlook (AEO8). 2024.
5. Pemerintah Indonesia Undang-Undang Nomor 59 Tahun 2024 Rencana Pembangunan Jangka Panjang Nasional Tahun 2025-2045. Undang. Republik Indones. Nomor 59 2024, 20.
6. Kementerian Energi dan Sumber Daya Mineral Rencana Umum Ketenagalistrikan Nasional 2019-2038. Kementeri. Energi dan Sumber Daya Mineral. 2025, 1–441.
7. Republik Indonesia Presidential Regulation Number 112 of 2022 (The Acceleration of Renewable Energy Development for Electricity). Gov. Indones. 2022, 1–37.
8. B P S 2025 Catalog : 1101001. Stat. Indones. 2020 2021, 53,2025, 790.
9. Statistics Pln 2024. https://web.pln.co.id/statics/uploads/2025/07/Statistik-PLN-2024-Audited-Indo-Eng-Final-Compressed-update-sheet.pdf 2025.
10. BPS Proyeksi Penduduk Indonesia 2020–2050 Hasil Sensus Penduduk 2020; 2023; ISBN 9786024385217.
11. Hasan, K.; Hummer, L. Pembangkit Batubara Captive Indonesia Terus Melonjak: Kapasitas Naik Tiga Kali Lipat Dalam Lima Tahun Picu Beban Kesehatan Publik Mencapai USD 20 Miliar. 2024.
12. ADB Regional: Accelerating the Clean Energy Transition in Southeast Asia. 2023.
13. Dewan Energi Nasional Laporan Analisis Neraca Energi Nasional 2021. Sekr. Jenderal Dewan Energi Nas. 2022, 1, 1–108.
14. Goverment of Indonesia Indonesia Long-Term Strategy for Low Carbon and Climate Resilience 2050. Minist. Environ. For. 2021, 156.
15. Garcia, A.R., Filipe, S.B., Fernandes, C., Estevão, C. & Ramos, G. (2023). Structural Equation Analysis of Health-Related Indicators among Home-Dwelling Elderly Centered on Subjective Health Perception. Journal of Health Studies, 12(3), 145–160.
16. Republik Indonesia Undang-Undang No. 7 Tahun 2021 Tentang Harmonisasi Peraturan Perpajakan (HPP). Republik Indones. 2021, 12, 1–68.
17. PT Perusahaan Listrik Negara Swasembada Energi , Berkelanjutan Untuk Negeri Energy Self-Sufficiency , Powering Nation for Sustainainability. 2024.
18. Ordonez, J.A.; Fritz, M.; Eckstein, J. Coal vs. Renewables: Least-Cost Optimization of the Indonesian Power Sector. Energy Sustain. Dev. 2022, 68, 350–363, doi:10.1016/j.esd.2022.04.017.
19. Handayani, K.; Krozer, Y.; Filatova, T. Trade-Offs between Electrification and Climate Change Mitigation: An Analysis of the Java-Bali Power System in Indonesia. Appl. Energy 2017, 208, 1020–1037, doi:10.1016/j.apenergy.2017.09.048.
20. Reyseliani, N.; Hidayatno, A.; Purwanto, W.W. Implication of the Paris Agreement Target on Indonesia Electricity Sector Transition to 2050 Using TIMES Model. Energy Policy 2022, 169, 113184, doi:10.1016/j.enpol.2022.113184.
21. Wijayanto, T.; Hakam, D.F.; Kemala, P.N. Vision for Indonesia's 2050 Power Generation: Scenarios of Hydrogen Integration, Nuclear Energy Prospects, and Coal Phase-out Impact. Sustain. Futur. 2025, 9, 100438, doi:10.1016/j.sftr.2025.100438.
22. Menteri ESDM Peraturan Menteri Energi Dan Sumber Daya Mineral Republik Indonesia Nomor 20 Tahun 2020 Aturan Jaringan Sistem Tenaga Listrik (Grid Code). Peratur. menteri ESDM 2020, 417–607.
23. Fernandez, M.I.; Go, Y.I.; Früh, W.G.; Wong, D.M.L. Projection of Electricity Generation Profiles and Carbon Emissions Towards 2050: A Malaysia Context. Energy Sustain. Dev. 2025, 85, 101681, doi:10.1016/j.esd.2025.101681.
24. Raza, M.A.; Khatri, K.L.; Hussain, A.; Rehman, H.; Rubab, F.; Khan, A. Sector-Wise Optimal Energy Demand Forecasting for a Developing Country Using LEAP Software †. Eng. Proc. 2022, 20, 4–8, doi:10.3390/engproc2022020006.
25. Meng, L.; Li, M.; Asuka, J. A Scenario Analysis of the Energy Transition in Japan’s Road Transportation Sector Based on the LEAP Model. Environ. Res. Lett. 2024, 19, doi:10.1088/1748-9326/ad3566.
26. Vakulchuk, R.; Overland, I.; Suryadi, B. ASEAN’s Energy Transition: How to Attract More Investment in Renewable Energy. Energy, Ecol. Environ. 2023, 8, 1–16, doi:10.1007/s40974-022-00261-6.
27. KLHK Laporan IGRK MPV 2021. Klhk 2022, 7, 1–156.
28. PT. Perusahaan Listrik Negara Rencana Usaha Penyediaan Tenaga Listrik RUPTL) 2025-2034. PT. Perusah. List. Negara 2025, 1–1253.
29. PLN, S. 01001 - 210621. Stat. PLN 2020 2021, 2, 407–416.
30. Kementerian ESDM Data Inventory Emisi GRK Sektor Energi; 2016; ISBN 9786020836171.
31. Bank, A.D. Renewable Energy Tariffs and and Incentives in Indonesia:; 2020; ISBN 9789292623241.
32. MEMR Technology Data for the Indonesian Power Sector. Minist. Energy Miner. Resour. Repub. Indones. 2024, 1–288.
33. Kementrian Energi dan Sumber Daya Mineral (ESDM) Keputusan Menteri ESDM Nomor : 139.K/HK.02/MEM.B/2021 Tentang Pemenuhan Batubara Kebutuhan Dalam Negeri. 2021.
34. Kementrian ESDM Tata Cara Penetapan Pengguna Gas Bumi Tertentu Dan Harga Gas Bumi Tertentu Di Bidang Industri. 2022.
35. Guaita, N.; Abou-Jaoude, A.; Larsen, L.M.; Stauff, N.E. Updating Nuclear Energy Cost Estimates for Net Zero World Initiative. Pacific Basin Nucl. Conf. PBNC 2024 2024, 123–132, doi:10.13182/PBNC24-44989.
36. IGES (2023) Biomass Co-firing in Indonesia. Hayama: Institute for Global Environmental Strategies (IGES). p. 17.
37. Paat, F. J., Widiatmaka, W., Purwanto, M. Y. J., Sunarti, T. C. (2022). Life Cycle Assessment (LCA) of Nutmeg Syrup Agroindustrial Products. Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), 3(1), 8–15. https://doi.org/10.35791/jat.v3i1.40898
38. Kanugrahan, S., & Hakam, D. (2023). Long-term scenarios for Indonesia's power sector to achieve its NDC by 2060. Energies, 16(12), 4719. https://doi.org/10.3390/en16124719
39. Rahmanta, M., et al. (2023). Nuclear power plant to support Indonesia's net zero emissions: A case study of small modular reactors. Energies, 16(9), 3752. https://doi.org/10.3390/en16093752
40. Wijayanto, T., Hakam, D., & Kemala, P. (2025). Vision for Indonesia's 2050 power generation: Scenarios of hydrogen integration, nuclear energy prospects, and coal phase-out impact. Sustainable Futures, 9, 100438. https://doi.org/10.1016/j.sftr.2025.100438
41. Wang, S.; Sheng, C. Evaluating the Effect of Ammonia Co-Firing on the Performance of a Pulverized Coal-Fired Utility Boiler. Energies 2023, 16, doi:10.3390/en16062773.
42. Banihabib, R.; Lingstädt, T.; Wersland, M.; Kutne, P.; Assadi, M. Development and Testing of a 100 KW Fuel-Flexible Micro Gas Turbine Running on 100% Hydrogen. Int. J. Hydrogen Energy 2024, 49, 92–111, doi:10.1016/j.ijhydene.2023.06.317.
43. Robertson, B.; Mousavian, M. The Carbon Capture Crux. Inst. Energy Econ. Financ. Anal. 2022, 1–79.
44. Martin-Roberts, E.; Scott, V.; Flude, S.; Johnson, G.; Haszeldine, R.S.; Gilfillan, S. Carbon Capture and Storage at the End of a Lost Decade. One Earth 2021, 4, 1569–1584, doi:10.1016/j.oneear.2021.10.002.
45. Barran, I.; Setiawan, E.A. PV Rooftop Repowering Potential in Indonesia: Study Case. IOP Conf. Ser. Earth Environ. Sci. 2022, 997, doi:10.1088/1755-1315/997/1/012016.
46. Pham, A.; Cole, W.; Gagnon, P.; Pham, A.; Cole, W.; Gagnon, P. Average and Marginal Capacity Credit Values of Renewable Energy and Battery Storage in the United States Power System Average and Marginal Capacity Credit Values of Renewable Energy and Battery Storage in the United States Power System. Natl. Renew. Energy Lab. Tech. Rep. 2024.
47. Sugiawan, Y.; Managi, S. Public Acceptance of Nuclear Power Plants in Indonesia: Portraying the Role of a Multilevel Governance System. Energy Strateg. Rev. 2019, 26, 100427, doi:10.1016/j.esr.2019.100427.
48. Lim, S.; Kim, T.; Lee, K.Y.; Choi, D.; Park, J.W. Impact of High Penetration of Renewables on Power System Frequency Response: A Review and Verification. Renew. Sustain—Energy Rev. 2025, 217, 115728, doi:10.1016/j.rser.2025.115728.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Nursidik, Rizaldi Boer, Meika Syahbana Rusli, Frangky J. Paat, Sultan Aziz Barai

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


















