Analysis of Mangrove Vegetation and Distribution Using Landsat 8 Images In Bolaang Mongondow East, North Sulawesi

Authors

  • Simon I. Patty BADAN RISET DAN INOVASI NASIONAL
  • Doni Nurdiansah Pusat Riset Oseanografi, Badan Riset Dan Inovasi Nasional
  • Marenda Pandu Rizqi Pusat Riset Oseanografi, Badan Riset Dan Inovasi Nasional
  • Rikardo Huwae Pusat Riset Oseanografi, Badan Riset Dan Inovasi Nasional

DOI:

https://doi.org/10.35800/jip.v10i2.41069

Keywords:

density, mangrove, Landsat 8, NDVI

Abstract

Mangrove is one of the objects that can be identified by remote sensing technology using satellite imagery. Analysis of the distribution and density of mangrove vegetation using Landsat 8 imagery was carried out in Bolaang Mongondow Timur, North Sulawesi in September 2020. This study aims to map the distribution of mangroves and determine the correlation between NDVI values, canopy cover, and mangrove density. The data analysis used Landsat 8 images with ENVI 5.3 and ArcGIS 10.1 software. Maximum likelihood classification is used to separate mangrove and non-mangrove features. The calculation of mangrove vegetation density using the NDVI algorithm and single-channel classification using the density slice method to divide mangrove density based on the range of pixel values of the NDVI image. Next, to test the accuracy of the classification results using an error matrix (confusion matrix) and the NDVI vegetation index correlation test compared with canopy cover and density data. The classification resulted in four different land cover classes with an overall accuracy of 97.70% and a kappa coefficient of 0.9688. The mangrove vegetation distribution from the classification results is 524.75 ha. The NDVI correlation with the percentage of canopy cover is very significant with a correlation coefficient (r) = 0.9516, while the NDVI correlation with density resulted in moderate correlation (r = 0.5315).

Keywords: density; mangrove; Landsat 8; NDVI

                                             

Abstrak

Mangrove merupakan salah satu objek yang dapat diidentifikasi menggunakan teknologi penginderaan jauh yakni memanfaatkan citra satelit. Analisis sebaran dan kerapatan vegetasi mangrove menggunakan citra Landsat 8 telah dilakukan di Bolaang Mongondow Timur, Sulawesi Utara pada bulan September 2020. Penelitian ini bertujuan untuk memetakan sebaran mangrove dan mengetahui hubungan korelasi antara nilai NDVI dengan tutupan kanopi dan kerapatan mangrove. Pengolahan data citra Landsat 8 dengan perangkat lunak ENVI 5.3 dan ArcGIS 10.1. Klasifikasi maximum likelihood digunakan untuk memisahkan fitur mangrove dan non mangrove. Perhitungan kerapatan vegetasi mangrove dengan algoritma NDVI dan klasifikasi saluran tunggal menggunakan metode density slice untuk membagi kerapatan mangrove berdasarkan rentang nilai piksel citra NDVI. Uji akurasi hasil klasifikasi menggunakan matriks kesalahan (confussion matriks) dan uji korelasi indeks vegetasi NDVI dengan data tutupan kanopi dan kerapatan. Hasil klasifikasi mendapatkan empat kelas tutupan lahan yang berbeda dengan overall akurasi sebesar 97,70 % dengan kappa coefisien sebesar 0,9688. Luas sebaran vegetasi mangrove dari hasil klasifikasi adalah 524,75 ha. Korelasi NDVI  dengan persentase tutupan kanopi termasuk korelasi sangat kuat dengan koefisien korelasi r = 0,9516 sedangkan korelasi NDVI  dengan kerapatan termasuk korelasi sedang (r = 0,5315).

Kata kunci: kerapatan; mangrove; Landsat 8; NDVI 

References

Akbar N., Baksir A., Tahir I., dan D. Arafat. 2016. Struktur komunitas mangrove di Pulau Mare, Kota Tidore Kepulauan, Maluku Utara, Indonesia. Depik, 5(3): 133-142.

Alatorre, L.C., Sanchez-Andres R., Cirujano S., Beguería S., and S. Sanchez-Carrill. 2011. Identification of mangrove areas by remote sensing: The ROC curve technique applied to the northwestern Mexico coastal zone using Landsat imagery. Remote Sensing, 3(8):1568–1583. doi:10.3390/rs3081568.

Arhatin, R. E., dan P.I. Wahyuningrum. 2013. Algoritma indeks vegetasi mangrove menggunakan citra landsat ETM. Buletin PSP, 21(2):215-227.

Bengen, D.G. 2001. Pedoman teknis pengenalan dan pengelolaan ekosistem mangrove. Pusat Kajian Sumberdaya Pesisir dan Lautan. Institut Pertanian Bogor.

Congalton, R.G., and K. Green. 2009. Thematic and positional accuracy assessment of digital remotely sensed data. Assessing The Accuracy of Remotely Sensed Data: Principles and Practices. New York (US). 179p.

Damanik, R., Djamaluddin, R. 2012. Atlas Mangrove Teluk Tomini. Program SUSCLAM. Sustainable Coastal Livelihoods and Management Program. Canadian International Development Agency. IUCN. Lestari Inc. Canada Sustainable Development.

Departemen Kehutanan. 2005. Pedoman inventarisasi dan identifikasi lahan kritis mangrove. Direktorat Jenderal Rehabilitasi Lahan dan Perhutanan Sosial, Jakarta.

Dharmawan, I.W.E., dan Pramudji. 2014. Panduan monitoring status ekosistem mangrove. COREMAP-CTI LIPI, Jakarta. 35 hlm.

Faizal, A., dan M.A. Amran. 2005. Model transformasi indeks vegetasi yang efektif untuk prediksi kerapatan mangrove Rhizophora macronata. IN: PIT MAPIN XIV ITS. Prosiding: 14-15 September 2005. Surabaya: Masyarakat Ahli Penginderaan Jauh (MAPIN):34-40.

Green, E., Mumby P., Edwards A., dan C. Clark. 2000. Remote Sensing Handbook for Tropical Coastal Management. A. J. Edwards, editor. The United Nations Educational, Scientific and Cultural Organization, Paris.

Hendrawan., Jonson L. Gaol dan Setyo Budi Susilo. 2018. Studi kerapatan dan perubahan tutupan mangrove menggunakan citra satelit di Pulau Sebatik Kalimantan Utara. Jurnal Ilmu dan Teknologi Kelautan Tropis, 10(1):99–109.

Kementerian Negara Lingkungan Hidup. 2004. Keputusan Menteri Negara Lingkungan Hidup No. 201 Tahun 2004 Tentang Kriteria Baku dan Pedoman Penentuan Kerusakan Mangrove. Jakarta.

Kirui, KB., Kairo JG., Bosire J., Viergever KM., Rudra S., Huxham M., and RA. Briers. 2013. Mapping of Mangrove Forest Land Cover Change along the Kenya Coastline Using Landsat Imagery. Ocean Coast Manage, 83:19-24. DOI: 10.1016/j.ocecoaman.2011.12.00.

Kuenzer, C., Bluemel A., Gebhardt S., Quoeet TV., and S. Dech. 2011. Remote Sensing of Mangrove Ecosystems, A Review. Remote Sensing, 3:878-928. DOI: 10.3390/rs3050878.

Kusmana, C., Wilarso S., Hilwan I., Pamoengkas P., Wibowo C., Tiryana T., Triswanto A., Yunasfi., Hamzah. 2003. Teknik Rehabilitasi Mangrove. Fakultas Kehutanan IPB. Bogor. 177 Hal.

Mumby P.J., Skirving W.O., Strong A.E., Hardy J.T., LeDrew E.F., Hochberg E.J., Sumpf R. P., dan L.T. David. 2004. Remote sensing of coral reef and their physical environment. Marine pollution bulletin, 48(3-4):219-228.

Nawangwulan, N.H. 2013. Analisis Pengaruh Perubahan Lahan terhadap Hasil Produksi Tanaman Pangan di Kabupaten Pati Tahun 2001- 2011. Jurnal Geodesi Undip, 2(2):127-140.

Nurdiansah, D dan I.W.E. Dharmawan. 2018. Komunitas mangrove di wilayah pesisir Pulau Tidore dan sekitarnya. Oseanologi dan Limnologi di Indonesia, 3(1): 1-9.

Prahasta, E. 2008. Remote sensing: praktis penginderaan jauh dan pengolahan citra dijital dengan perangkat lunak ermapper. Informatika. Bandung. 406 hlm.

Sugiyono. 2008. Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta.

Supardjo, M.N. 2008. Identifikasi vegetasi mangrove di Segoro Anakan Selatan, Taman Nasional Alas Purwo, Banyuwangi, Jawa Timur. Jurnal Saintek Perikanan, 3(2):9-15.

Suwargana, N., 2008. Analisa perubahan hutan mangrove menggunakan data penginderaan jauh di pantai Bahagia, Muara Gembong, Bekasi. Jurnal Penginderaan Jauh, 5:64-74.

Suyarso. 2019. Teknik Eksplorasi Sumber Daya Pesisir (Terumbu Karang dan Mangrove) Berbasis Geospasial. Penerbit ANDI: Yogyakarta.

Waas, H.J., dan B. Nababan. 2010. Pemetaan dan analisis index vegetasi mangrove di pulau Saparua, Maluku Tengah. Jurnal Ilmu dan Teknologi Kelautan Tropis, 2(1): 50–58.

Downloads

Published

2022-06-25

How to Cite

Patty, S. I., Nurdiansah, D., Rizqi, M. P., & Huwae, R. (2022). Analysis of Mangrove Vegetation and Distribution Using Landsat 8 Images In Bolaang Mongondow East, North Sulawesi. Jurnal Ilmiah Platax, 10(2), 251–260. https://doi.org/10.35800/jip.v10i2.41069

Most read articles by the same author(s)