ENVISIONING THE FUTURE: THE ROLE OF ARTIFICIAL INTELLIGENCE IN NEXT GENERATION ERP SYSTEM

Penulis

  • Shinta Winasis Institut Teknologi Sepuluh November
  • Agung Terminanto

DOI:

https://doi.org/10.35794/jmbi.v12i1.61479

Abstrak

Lanskap bisnis telah mengalami transformasi signifikan dalam beberapa tahun terakhir, didorong oleh kemajuan teknologi yang pesat dan akses terhadap data dalam jumlah besar. Saat ini, kepemimpinan yang efektif sangat bergantung pada pengambilan keputusan berbasis data, memungkinkan para pemimpin untuk membuat pilihan yang terbaik sesuai dengan tren pasar dan perilaku konsumen. Selain itu dibutuhkan adaptasi organisasi terhadap kompleksitas bisnis modern. Tanpa sistem yang terintegrasi, proses bisnis dapat terfragmentasi, mengakibatkan ketidakefisienan, kesalahan, dan pengambilan keputusan yang keliru. Untuk mengatasi tantangan ini, Enterprise Resource Planning (ERP) muncul sebagai solusi penting. ERP mengintegrasikan berbagai fungsi bisnis, seperti manajemen keuangan, produksi, pengadaan, dan sumber daya manusia, ke dalam satu platform terpadu. Perusahaan dapat memantau dan mengelola aktivitas dengan lebih efisien, meningkatkan visibilitas data, serta mempercepat pengambilan keputusan berbasis informasi akurat. Implementasi ERP tidak hanya membantu standarisasi proses, tetapi juga memungkinkan organisasi merencanakan strategi bisnis dengan lebih baik. Dalam konteks transformasi digital, integrasi Kecerdasan Buatan (AI) dalam sistem ERP secara signifikan memungkinkan organisasi mengotomatiskan tugas rutin dan mendapatkan wawasan lebih mendalam tentang operasional mereka. Dengan memanfaatkan teknologi seperti Machine Learning, Pemrosesan Bahasa Alami, dan Prediktif Analitik, sistem ERP yang diperkuat AI dapat mengotomatiskan tugas berulang, menyediakan analisis data komprehensif, serta memfasilitasi pengambilan keputusan berbasis data yang lebih matang dibandingkan sistem ERP konvensional. Hal ini memungkinkan perusahaan lebih responsif terhadap perubahan pasar dan permintaan pelanggan. Penelitian ini akan mengeksplorasi potensi dan tantangan penerapan sistem ERP berbasis AI, antara lain hambatan terkait biaya implementasi, keterbatasan teknologi, dan resistensi terhadap perubahan. Manfaat jangka panjang dari integrasi AI ke dalam sistem ERP sangat penting bagi organisasi untuk mempertahankan daya saing. Temuan penelitian ini juga bertujuan memberikan wawasan bagi perusahaan dalam menghadapi transformasi digital dan memaksimalkan potensi sumber daya mereka.

Kata Kunci: Kecerdasan Buatan, ERP, Solusi Inovatif

Referensi

Al-Amin, M., Hossain, T., Islam, J., & Biwas, S. K. (2023). History, features, challenges, and critical success factors of enterprise resource planning (ERP) in the era of industry 4.0. European Scientific Journal, ESJ, 19(6), 31.

Bauskar, S. (2024). Business Analytics in Enterprise System Based on Application of Artificial Intelligence. International Research Journal of Modernization in Engineering Technology and Science.

Boutros, M. B., El Hajj, C., Jawad, D., & Martínez Montes, G. (2024). Diffusion of ERP in the Construction Industry: An ERP Modules Approach: Case Study of Developing Countries. Buildings, 14(10), 3224.

Chirvase, C. S., & Zamfir, A. (2023, July). Exploring enterprise resource planning (ERP) development: Challenges, opportunities and how can help companies navigate turbulent contemporary times. In Proceedings of The International Conference on Business Excellence (Vol. 17, No. 1, pp. 1919-1928).

Faheem, M., Aslam, M. U. H. A. M. M. A. D., & Kakolu, S. R. I. D. E. V. I. (2024). Enhancing financial forecasting accuracy through AI-driven predictive analytics models. Retrieved December, 11.

Firdaus, A., & Winasis, S. (2025). EMPOWERING STARTUP COMPANIES WITH ARTIFICIAL INTELLIGENCE TECHNOLOGY. JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi)., 12(1), 53-62.

Garg, P. K. (2021). Overview of artificial intelligence. In Artificial intelligence (pp. 3-18). Chapman and Hall/CRC.

Goundar, S., Nayyar, A., Maharaj, M., Ratnam, K., & Prasad, S. (2021). How artificial intelligence is transforming the ERP systems. Enterprise systems and technological convergence: Research and practice, 85.

Haider, L. (2021). Artificial intelligence in ERP, Bachelor Theses Metropolia University of Applied Sciences

Halimuzzaman, M., Sharma, J., & Khang, A. (2024). Enterprise Resource Planning and Accounting Information Systems: Modeling the Relationship in Manufacturing. In Machine Vision and Industrial Robotics in Manufacturing (pp. 418-434). CRC Press

Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. Production Planning & Control, 33(16), 1573-1590.

Hustad, E., & Stensholt, J. (2023). Customizing ERP-systems: A framework to support the decision-making process. Procedia Computer Science, 219, 789-796.

Jawad, Z. N., & Balázs, V. (2024). Machine learning-driven optimization of enterprise resource planning (ERP) systems: a comprehensive review. Beni-Suef University Journal of Basic and Applied Sciences, 13(1), 4.

Jhurani, J. (2022). Revolutionizing enterprise resource planning: The impact of artificial intelligence on efficiency and decision-making for corporate strategies. International Journal of Computer Engineering and Technology (IJCET), 13(2), 156-165

Kacar, M. (2023). Application of AI in customer experience management. In Marketing and Sales Automation: Basics, Implementation, and Applications(pp. 409-430). Cham: Springer International Publishing.

Kotha, K. R. (2024). Integration Strategies For E-Commerce Platforms With Erp Systems: A Comparative Analysis. International Journal Of Computer Engineering And Technology (IJCET), 15(5), 287-295.

Lipych, L., Khilukha, O., & Kushnіr, M. (2021, November). Evolution of the development of enterprise management information systems. In Economic Forum(Vol. 4, No. 11, pp. 5-94).

Mah, P. M., Skalna, I., & Muzam, J. (2022). Natural language processing and artificial intelligence for enterprise management in the era of industry 4.0. Applied Sciences, 12(18), 9207.

Mandava, H. (2024) Streamlining enterprise resource planning through digital technologies. Journal of Advanced Engineering Technology. ResearchGate.

Mardiani, E., Riswandi, D. I., Suprayitno, D., & Mudia, H. (2024). Implementation of internet of things in the production process of msmes: quality improvement and process control. Jurnal Informasi dan Teknologi, 310-316.

Martins, O. (2025). Ethical Considerations in AI-Enhanced ERP Systems: Balancing Innovation with Data Privacy and Security, reasearchgate.net

Moore, C. (2023). AI-powered big data and ERP systems for autonomous detection of cybersecurity vulnerabilities. Nanotechnology Perceptions, 19, 46-64

Moore, C., Chinta, P. C. R., & Routhu, K. (2024). Harnessing Big Data and AI-Driven ERP Systems to Enhance Cybersecurity Resilience in Real-Time Threat Environments. Available at SSRN 5130235

Nyathani, R., Allam, K., Engineer, B. I., Joseph, S., Daniel, S., & Godwin, G. O. (2024). Synergizing AI, Cloud Computing, and Big Data for Enhanced Enterprise Resource Planning (ERP) Systems. Int. J. Comput. Tech, 11, 1-6.

Pugliese, R., Regondi, S., & Marini, R. (2021). Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Science and Management, 4, 19-29.

Pokala, P. (2024). The integration and impact of artificial intelligence in modern enterprise resource planning systems: A comprehensive review. Available at SSRN 5069295

Rahaman, M. S., Ahsan, M. T., Anjum, N., Terano, H. J. R., & Rahman, M. M. (2023). From ChatGPT-3 to GPT-4: a significant advancement in ai-driven NLP tools. Journal of Engineering and Emerging Technologies, 2(1), 1-11.

Santos, F., & Martinho, R. (2021). Architectural Challenges on the Integration of e-Commerce and ERP Systems: A Case Study. In ICEIS (1) (pp. 313-319).

Sarferaz, S. (2024). Embedding Artificial Intelligence into ERP Software. Springer Nature

Selamoğlu, B. İ. (2023). MRP and ERP. In Smart and Sustainable Operations and Supply Chain Management in Industry 4.0 (pp. 203-221).

Schütte, R. (2024). The next generation of ERP systems: problems of traditional ERP-Systems and the next wave of really standardized ERP-Systems. Informing possible future worlds—essays in honour of Ulrich Frank. Logos, Berlin, 427-452.

Tang, L., & Xu, W. (2021). Practice of ERP cloud development and evolution. In 2021 IEEE 12th international conference on software engineering and service science (ICSESS) (pp. 190-197). IEEE.

Ulfianinda, T (2023), 12 Manfaat ERP Bagi Perusahaan, https://www.mas-software.com/blog/manfaat-erp

Vaid, A., & Sharma, C. (2022). Leveraging SAP and artificial intelligence for optimized enterprise resource planning: Enhancing efficiency, automation, and decision-making. DOI https://doi. org/10.30574/wjarr, 3

Weerasekara, U., & Gooneratne, T. (2023). Enterprise resource planning (ERP) system implementation in a manufacturing firm: Rationales, benefits, challenges and management accounting ramifications. Accounting and Management Information Systems, 22(1), 86-110.

Winasis, S., & Dinariyana, A. A. B. (2024). Sustainable Startups: The Game Changing Role of Enterprise Resource Planning. JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi)., 11(3), 1866-1880.

Yathiraju, N. (2022). Investigating the use of an artificial intelligence model in an ERP cloud-based system. International Journal of Electrical, Electronics and Computers, 7(2), 1-26.

Diterbitkan

2025-04-30

Cara Mengutip

Winasis, S., & Terminanto, A. (2025). ENVISIONING THE FUTURE: THE ROLE OF ARTIFICIAL INTELLIGENCE IN NEXT GENERATION ERP SYSTEM. JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis Dan Inovasi Universitas Sam Ratulangi)., 12(1), 296–306. https://doi.org/10.35794/jmbi.v12i1.61479